Open Access
Journal of Biological Chemistry, volume 277, issue 50, pages 48905-48912
Identification in Human Atherosclerotic Lesions of GA-pyridine, a Novel Structure Derived from Glycolaldehyde-modified Proteins
Ryoji Nagai
1
,
Cristina Miki Hayashi
2
,
Ling Xia
2
,
Motohiro Takeya
3
,
Seikoh HORIUCHI
2
Publication type: Journal Article
Publication date: 2002-12-06
Journal:
Journal of Biological Chemistry
scimago Q1
SJR: 1.766
CiteScore: 8.5
Impact factor: 4
ISSN: 00219258, 1083351X
PubMed ID:
12377783
Biochemistry
Molecular Biology
Cell Biology
Abstract
Glycolaldehyde (GA) is formed from serine by action of myeloperoxidase and reacts with proteins to form several products. Prominent among them isN ε-(carboxymethyl)lysine (CML), which is also known as one of the advanced glycation end products. Because CML is formed from a wide range of precursors, we have attempted to identify unique structures characteristic of the reaction of GA with protein. To this end, monoclonal (GA5 and 1A12) and polyclonal (non-CML-GA) antibodies specific for GA-modified proteins were prepared. These antibodies specifically reacted with GA-modified and with hypochlorous acid-modified BSA, but not with BSA modified by other aldehydes, indicating that the epitope of these antibodies could be a specific marker for myeloperoxidase-induced protein modification. By HPLC purification from GA-modifiedN α-(carbobenzyloxy)-l-lysine, GA5-reactive compound was isolated, and its chemical structure was characterized as 3-hydroxy-4-hydroxymethyl-1-(5-amino-5-carboxypentyl) pyridinium cation. This compound named as GA-pyridine was recognized both by 1A12 and non-CML-GA, indicating that GA-pyridine is an important antigenic structure in GA-modified proteins. Immunohistochemical studies with GA5 demonstrated the accumulation of GA-pyridine in the cytoplasm of foam cells and extracellularly in the central region of atheroma in human atherosclerotic lesions. These results suggest that myeloperoxidase-mediated protein modification via GA may contribute to atherogenesis.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.