Improving word prediction for augmentative communication by using idiolects and sociolects
Word prediction, or predictive editing, has a long history as a tool for augmentative and assistive communication. Improvements in the state-of-the-art can still be achieved, for instance by training personalized statistical language models. We developed the word prediction system Soothsayer. The main innovation of Soothsayer is that it not only uses idiolects, the language of one individual person, as training data, but also sociolects, the language of the social circle around that person. We use Twitter for data collection and experimentation. The idiolect models are based on individual Twitter feeds, the sociolect models are based on the tweets of a particular person and the tweets of the people he often communicates with. The sociolect approach achieved the best results. For a number of users, more than 50% of the keystrokes could have been saved if they had used Soothsayer.
Top-30
Journals
1
|
|
Frontiers in Communication
1 publication, 50%
|
|
Dutch Journal of Applied Linguistics
1 publication, 50%
|
|
1
|
Publishers
1
|
|
Frontiers Media S.A.
1 publication, 50%
|
|
John Benjamins Publishing Company
1 publication, 50%
|
|
1
|
- We do not take into account publications without a DOI.
- Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
- Statistics recalculated weekly.