volume 50 issue 3 pages 1267-1282

Conch maximal subrings

Publication typeJournal Article
Publication date2021-09-28
scimago Q2
wos Q3
SJR0.656
CiteScore1.1
Impact factor0.6
ISSN00927872, 15324125
Algebra and Number Theory
Abstract
It is shown that if R is a ring, p a prime element of an integral domain D≤R with ∩n=1∞pnD=0 and p∈U(R), then R has a conch maximal subring (see [14]). We prove that either a ring R has a conch max...
Found 
Found 

Top-30

Journals

1
Quaestiones Mathematicae
1 publication, 50%
Asian-European Journal of Mathematics
1 publication, 50%
1

Publishers

1
National Inquiry Services Center (NISC)
1 publication, 50%
World Scientific
1 publication, 50%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2
Share
Cite this
GOST |
Cite this
GOST Copy
Azarang A. Conch maximal subrings // Communications in Algebra. 2021. Vol. 50. No. 3. pp. 1267-1282.
GOST all authors (up to 50) Copy
Azarang A. Conch maximal subrings // Communications in Algebra. 2021. Vol. 50. No. 3. pp. 1267-1282.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1080/00927872.2021.1979993
UR - https://doi.org/10.1080/00927872.2021.1979993
TI - Conch maximal subrings
T2 - Communications in Algebra
AU - Azarang, A.
PY - 2021
DA - 2021/09/28
PB - Taylor & Francis
SP - 1267-1282
IS - 3
VL - 50
SN - 0092-7872
SN - 1532-4125
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2021_Azarang,
author = {A. Azarang},
title = {Conch maximal subrings},
journal = {Communications in Algebra},
year = {2021},
volume = {50},
publisher = {Taylor & Francis},
month = {sep},
url = {https://doi.org/10.1080/00927872.2021.1979993},
number = {3},
pages = {1267--1282},
doi = {10.1080/00927872.2021.1979993}
}
MLA
Cite this
MLA Copy
Azarang, A.. “Conch maximal subrings.” Communications in Algebra, vol. 50, no. 3, Sep. 2021, pp. 1267-1282. https://doi.org/10.1080/00927872.2021.1979993.
Profiles