Open Access
Open access
Clinical and Experimental Hypertension, volume 46, issue 1

Uric acid mediates kidney tubular inflammation through the LDHA/ROS/NLRP3 pathway

Publication typeJournal Article
Publication date2024-11-03
scimago Q3
wos Q3
SJR0.448
CiteScore3.9
Impact factor1.5
ISSN10641963, 15256006, 01483927
Wen S., Arakawa H., Tamai I.
Pharmacology and Therapeutics scimago Q1 wos Q1
2024-04-01 citations by CoLab: 50 Abstract  
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Azushima K., Kovalik J., Yamaji T., Ching J., Chng T.W., Guo J., Liu J., Nguyen M., Sakban R.B., George S.E., Tan P.H., Lim S.C., Gurley S.B., Coffman T.M.
Kidney International scimago Q1 wos Q1
2023-12-01 citations by CoLab: 21 Abstract  
Diabetic nephropathy (DN) is characterized by abnormal kidney energy metabolism, but its causes and contributions to DN pathogenesis are not clear. To examine this issue, we carried out targeted metabolomics profiling in a mouse model of DN that develops kidney disease resembling the human disorder. We found a distinct profile of increased lactate levels and impaired energy metabolism in kidneys of mice with DN, and treatment with an angiotensin-receptor blocker (ARB) reduced albuminuria, attenuated kidney pathology and corrected many metabolic abnormalities, restoring levels of lactate toward normal while increasing kidney ATP content. We also found enhanced expression of lactate dehydrogenase isoforms in DN. Expression of both the LdhA and LdhB isoforms were significantly increased in kidneys of mice, and treatment with ARB significantly reduced their expression. Single-cell sequencing studies showed specific up-regulation of LdhA in the proximal tubule, along with enhanced expression of oxidative stress pathways. There was a significant correlation between albuminuria and lactate in mice, and also in a Southeast Asian patient cohort consisting of individuals with type 2 diabetes and impaired kidney function. In the individuals with diabetes, this association was independent of ARB and angiotensin-converting enzyme inhibitor use. Furthermore, urinary lactate levels predicted the clinical outcomes of doubling of serum creatinine or development of kidney failure, and there was a significant correlation between urinary lactate levels and biomarkers of tubular injury and epithelial stress. Thus, we suggest that kidney metabolic disruptions leading to enhanced generation of lactate contribute to the pathogenesis of DN and increased urinary lactate levels may be a potential biomarker for risk of kidney disease progression.
Wu H., Liu H., Zhang Z., Chen J.
2023-11-04 citations by CoLab: 4 PDF Abstract  
Abstract Background Most sarcomatoid differentiated renal cell carcinoma was differentiated from Chromophobe renal cell carcinoma (KICH) and related to a bad prognosis. Thus, finding biomarkers is important for the therapy of KICH. Methods The UCSC was used for determining the expression of mRNA and miRNA and clinical data in KICH and normal samples. KEGG and GO were used for predicting potential function of differently expressed genes (DEGs). Optimal prognostic markers were determined by Lasso regression. Kaplan–Meier survival, ROC, and cox regression were used for assessing prognosis value. GSEA was used for predicting potential function of markers. The relations between markers and immune cell infiltration were determined by Pearson method. The upstream miRNA of markers was predicted in TargetScan and DIANA. Results The 6162 upregulated and 13,903 downregulated DEGs were identified in KICH. Further CENPE and LDHA were screened out as optimal prognostic risk signatures. CENPE was highly expressed while LDHA was lowly expressed in KICH samples, and the high expressions of 2 genes contributed to bad prognosis. The functions of CENPE and LDHA were mainly enriched in proliferation related pathways such as cell cycle and DNA replication. In addition, the correlation of 2 genes with immune infiltrates in KICH was also observed. Finally, we found that has-miR-577 was the common upstream of 2 genes and the binding sites can be predicted. Conclusion CENPE and LDHA were identified as the important prognostic biomarkers in KICH, and they might be involved in the proliferation of cancer cell.
Chen J., Wu F., Cao Y., Xing Y., Liu Q., Zhao Z.
PeerJ scimago Q1 wos Q2 Open Access
2023-08-01 citations by CoLab: 4 Abstract  
Lactate dehydrogenase (LDH) is a crucial glycolytic enzyme which mediates the metabolic plasticity of cancer cells, however its clinical significance in renal cell carcinoma (RCC) is poorly understood. Herein, we examined the prognostic significance of the two primary components of LDH, i.e., LDHA and LDHB, in clear cell RCC (ccRCC) patients and further explored their association with immune infiltration in ccRCC. In this study, the expression levels of LDHA and LDHB were examined in ccRCC and adjacent normal tissues by Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, and western blotting (WB) analyses, and their prognostic values were estimated in 150 ccRCC and 30 adjacent normal tissues by immunohistochemistry (IHC) analysis. The relationship to immune infiltration of LDHA and LDHB genes was further investigated using tumor immune estimation resource 2 (TIMER2) and Tumor-Immune System Interactions and DrugBank (TISIDB) databases, respectively. Public databases and WB analyses demonstrated higher LDHA and lower LDHB in ccRCC than in non-tumor tissues. IHC analysis revealed that LDHA and LDHB expression profiles were significantly associated with tumor grade, stage, size, and overall survival (OS). Univariate survival analysis displayed that high grade, advanced stage, large tumor, metastasis, high LDHA, and low LDHB expression were significantly associated with a poorer OS, and multivariate analysis revealed tumor stage and LDHB were identified as independent predictors for OS in patients with ccRCC. Further TIMER2 and TISIDB analyses demonstrated that LDHA and LDHB expression was significantly related to multiple immune cells and immune inhibitors in over 500 ccRCC patients. These findings revealed that LDHB was an independent favorable predictor, and LDHA and LDHB correlated with tumor immune infiltrates in ccRCC patients, which indicated LDHA/LDHB could be implicated in the tumorigenesis of ccRCC and might be potential therapeutic targets for patients with ccRCC.
He B., Nie Q., Wang F., Wang X., Zhou Y., Wang C., Guo J., Fan X., Ye Z., Liu P., Wen J.
Journal of Cellular Physiology scimago Q1 wos Q1
2023-07-20 citations by CoLab: 14 Abstract  
AbstractHyperuricemia closely correlates with the development of atherosclerosis, but little is known of the mechanism by which atherosclerosis progression occurs in hyperuricemia. Atherosclerosis appears to involve pyroptosis, an emerging mechanism of proinflammatory regulated cell death. This study tested the hypothesis that pyroptosis underlies the relationship between hyperuricemia and atherosclerosis, using ApoE−/− mice (a model of atherosclerosis), human umbilical vein endothelial cells (HUVECs), and human atherosclerotic arterial samples. We found that hyperuricemia can aggravate the aortic atherosclerotic plaque‐load in ApoE−/− mice and promote endothelial cell pyroptosis. Additionally, hyperuricemia can increase the levels of serum inflammatory factors (including IL‐1β and IL‐18). Exposure to lipopolysaccharide plus a high concentration of soluble uric acid (≥12 mg/dL) induced cell pyroptosis in HUVECs, as evidenced by increased expression of pyroptosis‐related proteins and elevated release of lactate dehydrogenase (a marker of tissue damage). Further, MCC950, a selective nucleotide‐binding oligomerization domain (NOD)‐like receptor 3 (NLRP3) inflammasome inhibitor, and N‐acetyl‐ l‐cysteine, an antioxidant, attenuated HUVEC pyroptosis by inhibiting activation of the NLRP3 inflammasome and production of intracellular reactive oxygen species (ROS). Finally, we detected significantly higher expression of pyroptosis‐associated proteins in carotid specimens from patients with hyperuricemia. Collectively, our findings suggest that hyperuricemia can aggravate endothelial cell pyroptosis in aortic atherosclerotic plaques, promoting the development of atherosclerosis. Additionally, a high concentration of soluble uric acid can trigger the activation stage of the NLRP3 inflammasome, mediating endothelial cell pyroptosis, and this process is regulated by the cellular ROS level.
Gao Y., Yan W., Sun L., Zhang X.
Cartilage scimago Q1 wos Q1
2023-07-11 citations by CoLab: 4 Abstract  
Objectives Osteoarthritis (OA) is the most common joint disease. The occurrence and progression of OA are regulated by epigenetics. A large number of studies have shown the important regulatory role of noncoding RNAs in joint diseases. As the largest class of noncoding small RNAs, the importance of piRNAs in many diseases, especially cancer, has been increasingly recognized. However, few studies have explored the role of piRNAs in OA. Our study showed that hsa_piR_019914 decreased significantly in OA. This study aimed to demonstrate the role of hsa_piR_019914 as a potential biological target of OA in chondrocytes. Design The GEO database and bioinformatics analysis were used for a series of screenings, and the OA model using human articular chondrocytes (C28/I2 cells), SW1353 cells under inflammatory factor stimulation was used to determine that hsa_piR_019914 was significantly downregulated in OA. Overexpression or inhibition of hsa_piR_019914 in C28/I2 cells was achieved by transfecting mimics or inhibitors. The effect of hsa_piR_019914 on the biological function of chondrocytes was verified by qPCR, flow cytometry, and colony formation assays in vitro. The target gene of hsa_piR_019914, lactate dehydrogenase A (LDHA), was screened by small RNA sequencing and quantitative polymerase chain reaction (qPCR), LDHA was knocked out in C28/I2 cells by the transfection of siRNA LDHA, and the relationship between hsa_piR_019914, LDHA, and reactive oxygen species (ROS) production was verified by flow cytometry. Results The piRNA hsa-piR-019914 was significantly downregulated in osteoarthritis (OA). Hsa-piR-019914 reduced inflammation-mediated chondrocyte apoptosis and maintained cell proliferation and clone formation in vitro. Hsa-piR-019914 reduced the production of LDHA-dependent ROS through targeted regulation of LDHA expression, maintained chondrocyte-specific gene expression of ACAN and COL2, and inhibited the gene expression of MMP3 and MMP13. Conclusions Collectively, this study showed that hsa_piR_019914 was negatively correlated with the expression of LDHA, which mediates ROS production. Under the stimulation of inflammatory factors, overexpression of hsa_piR_019914 had a protective effect on chondrocytes in vitro, and the absence of hsa_piR_019914 exacerbated the negative effect of inflammation on chondrocytes. Studies on piRNAs provide new therapeutic interventions for OA.
Qiao P., Sun Y., Wang Y., Lin S., An Y., Wang L., Liu J., Huang Y., Yang B., Zhou H.
Antioxidants scimago Q1 wos Q1 Open Access
2023-04-28 citations by CoLab: 15 PDF Abstract  
Hyperuricemia (HUA)-induced oxidative stress is a crucial contributor to hyperuricemic nephropathy (HN), but the molecular mechanisms underlying the disturbed redox homeostasis in kidneys remain elusive. Using RNA sequencing, together with biochemical analyses, we found that nuclear factor erythroid 2-related factor 2 (NRF2) expression and nuclear localization levels were increased in early HN progression and then gradually declined below the baseline level. We identified the impaired activity of the NRF2-activated antioxidant pathway as a driver of oxidative damage in HN progression. Through nrf2 deletion, we further confirmed aggravated kidney damage in nrf2 knockout HN mice compared with HN mice. In contrast, the pharmacological agonist of NRF2 improved kidney function and alleviated renal fibrosis in mice. Mechanistically, the activation of NRF2 signaling reduced oxidative stress by restoring mitochondrial homeostasis and reducing NADPH oxidase 4 (NOX4) expression in vivo or in vitro. Moreover, the activation of NRF2 promoted the expression levels of heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO1) and enhanced the antioxidant capacity of cells. Furthermore, the activation of NRF2 ameliorated renal fibrosis in HN mice through the downregulation of the transforming growth factor-beta 1 (TGF-β1) signaling pathway and ultimately delayed the progression of HN. Collectively, these results suggested NRF2 as a key regulator in improving mitochondrial homeostasis and fibrosis in renal tubular cells by reducing oxidative stress, upregulating the antioxidant signaling pathway, and downregulating the TGF-β1 signaling pathway. The activation of NRF2 represents a promising strategy to restore redox homeostasis and combat HN.
Wu H., Dai R., Wang M., Chen C.
BMC Cardiovascular Disorders scimago Q2 wos Q3 Open Access
2023-01-10 citations by CoLab: 7 PDF Abstract  
AbstractCardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.
Lee D., Kim J., Ahn E., Hyeon J.S., Kim G., Park K., Jung Y., LEE Y., Son M.K., Kim S.W., Han S.Y., Kim J., Roh G.S., Cha D.R., Hwang G., et. al.
Translational Research scimago Q1 wos Q1
2022-11-01 citations by CoLab: 18 Abstract  
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
Wang Z., Hao D., Fang D., Yu J., Wang X., Qin G.
Frontiers in Endocrinology scimago Q1 wos Q2 Open Access
2022-03-17 citations by CoLab: 4 PDF Abstract  
Diabetic kidney disease (DKD) is the leading cause of both chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies showed that oxamate could regulate glycemic homeostasis and impacted mitochondria respiration in a hyperglycemia-dependent manner in the rat proximal tubular cells. To explore the transcriptome gene expression profiling of kidney tissues in human renal proximal epithelial tubular cell line (HK-2), we treated HK-2 cells with high D-glucose (HG) for 7 days before the addition of 40 mM oxamate for a further 24 hours in the presence of HG in this study. Afterwards, we identified 3,884 differentially expressed (DE) genes based on adjusted P-value ≤ 0.05 and investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). After qRT-PCR validations, MAP1LC3A, MAP1LC3B (P-value < 0.01) and BECN1 were found to show relatively higher expression levels in the treated groups than the control groups, while PGC1α (P-value < 0.05) showed the lower expressions. Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways [e.g., lysosome pathway (hsa04142) and p53 signaling pathway (hsa04115)] may be involved in the response of HK-2 cells to oxamate. Moreover, via WGCNA, we identified two modules: both the turquoise and blue modules were enriched in pathways associated with lysosome. However, the p53 signaling pathway was only found using all 3,884 DE genes. Furthermore, the key hub genes IGFBP3 (adjusted P-value = 1.34×10-75 and log2(FC) = 2.64) interacted with 6 up-regulated and 12 down-regulated DE genes in the network that were enriched in the p53 signaling pathway. This is the first study reporting co-expression patterns of a gene network after lactate dehydrogenase inhibition in HK-2 cells. Our results may contribute to our understanding of the underlying molecular mechanism of in vitro reprogramming under hyperglycemic stress that orchestrates the survival and functions of HK-2 cells.
Gherghina M., Peride I., Tiglis M., Neagu T.P., Niculae A., Checherita I.A.
2022-03-16 citations by CoLab: 182 PDF Abstract  
Background: The connection between uric acid (UA) and renal impairment is well known due to the urate capacity to precipitate within the tubules or extra-renal system. Emerging studies allege a new hypothesis concerning UA and renal impairment involving a pro-inflammatory status, endothelial dysfunction, and excessive activation of renin–angiotensin–aldosterone system (RAAS). Additionally, hyperuricemia associated with oxidative stress is incriminated in DNA damage, oxidations, inflammatory cytokine production, and even cell apoptosis. There is also increasing evidence regarding the association of hyperuricemia with chronic kidney disease (CKD), cardiovascular disease, and metabolic syndrome or diabetes mellitus. Conclusions: Important aspects need to be clarified regarding hyperuricemia predisposition to oxidative stress and its effects in order to initiate the proper treatment to determine the optimal maintenance of UA level, improving patients’ long-term prognosis and their quality of life.
Mao N., Fan Y., Liu W., Yang H., Yang Y., Li Y., Jin F., Li T., Yang X., Gao X., Cai W., Liu H., Xu H., Li S., Yang F.
2022-03-10 citations by CoLab: 11 PDF Abstract  
Glycolysis and ER stress have been considered important drivers of pulmonary fibrosis. However, it is not clear whether glycolysis and ER stress are interconnected and if those interconnections regulate the development of pulmonary fibrosis. Our previous studies found that the expression of LDHA, a key enzyme involved in glycolysis, was increased in silica-induced macrophages and silicotic models, and it was closely related to silicosis fibrosis by participating in inflammatory response. However, whether pharmacological inhibition of LDHA is beneficial to the amelioration of silicosis fibrosis remains unclear. In this study, we investigated the effects of oxamate, a potent inhibitor of LDHA, on the regulation of glycolysis and ER stress in alveolar macrophages and silicotic mice. We found that silica induced the upregulation of glycolysis and the expression of key enzymes directly involved in ER stress in NR8383 macrophages. However, treatment of the macrophages and silicotic mice with oxamate attenuated glycolysis and ER stress by inhibiting LDHA, causing a decrease in the production of lactate. Therefore, oxamate demonstrated an anti-fibrotic role by reducing glycolysis and ER stress in silicotic mice.
Hu Y., Shi Y., Chen H., Tao M., Zhou X., Li J., Ma X., Wang Y., Liu N.
Frontiers in Immunology scimago Q1 wos Q1 Open Access
2022-03-02 citations by CoLab: 49 PDF Abstract  
Hyperuricemia has become a common metabolic disease, and is a risk factor for multiple diseases, including chronic kidney disease. Our recent study indicated that following persistent uric acid stimulation, autophagy was activated in rats of hyperuricemic nephropathy (HN) and facilitated the development of renal fibrosis. Nevertheless, the potential mechanism by which autophagy promoted the progression of HN is still not fully elucidated. Thus, in the current study, we investigated the mechanisms of autophagy inhibition on the development of HN. Our data showed that autophagy was activated in human renal tubular cell lines (HK-2) exposure to uric acid. Inhibition of autophagy with 3-methyladenine (3-MA) and transfected with Beclin-1 siRNA prevented uric acid-induced upregulation of α-SMA, Collagen I and Collagen III in HK-2 cells. Moreover, uric acid upregulated autophagy via promoting the p53 pathway. In vivo, we showed that hyperuricemic injury induced the activation of NLRP3 inflammasome and pyroptosis, as evidenced by cleavage of caspase-1 and caspase-11, activation of gasdermin D (GSDMD) and the release of IL-1β and IL-18. Treatment with autophagy inhibitor 3-MA alleviated aforementioned phenomenon. Stimulation with uric acid in HK-2 cells also resulted in NLRP3 inflammasome activation and pyroptotic cell death, however treatment with 3-MA prevented all these responses. Mechanistically, we showed that the elevation of autophagy and degradation of autophagolysosomes resulted in the release of cathepsin B (CTSB), which is related to the activation of NLRP3 inflammasome. CTSB siRNA can inhibit the activation of NLRP3 inflammasome and pyroptosis. Collectively, our results indicate that autophagy inhibition protects against HN through inhibiting NLRP3 inflammasome-mediated pyroptosis. What’s more, blockade the release of CTSB plays a crucial role in this process. Thus, inhibition of autophagy may be a promising therapeutic strategy for hyperuricemic nephropathy.
Gong F., Li R., Zheng X., Chen W., Zheng Y., Yang Z., Chen Y., Qu H., Mao E., Chen E.
2021-12-18 citations by CoLab: 36 PDF
Song L., Yao S., Zheng D., Xuan Y., Li W.
2021-10-15 citations by CoLab: 13 Abstract  
To explore the protective effect and mechanism of astaxanthin on the kidney of rats with contrast-induced acute kidney injury. Forty SD rats were randomly divided into five groups: Control group (CON); Astaxanthin control group (AST); Contrast media group (CM); Astaxanthin pre-treatment group (AST + CM); N-acetylcysteine pre-treatment group (NAC + CM), each group with eight rats. The rats were killed 72 h after the modeling, the blood supernatant and kidneys were collected, and then the serum creatinine and blood urea nitrogen levels were measured; HE staining was used to observe the pathological changes in kidney tissue; TUNEL was used to detect apoptosis level in renal tubular epithelial cells; frozen section was used to observe the expression of ROS in renal tissue by reactive oxygen staining; the expression of NLRP3, ASC, caspase-1, IL-1β, IL-18 were detected by immunohistochemistry and western blot. The CI-AKI rat model was induced by iohexol. Then the elevated level of ROS activated the inflammatory response mediated by NLRP3 inflammasome (NLRP3, ASC, caspase-1). Subsequently, the increase in renal tubular epithelial cell apoptosis caused the destruction of the pathological structure of the kidney and finally led to renal impairment. While after the pretreatment of astaxanthin, the level of ROS was decreased. The activation level of NLRP3 inflammasome and its mediated inflammatory response were alleviated significantly. Eventually, the level of renal tubular epithelial cell apoptosis and renal damage were significantly mitigated. Astaxanthin can protect the kidney in CI-AKI by inhibiting the activation of NLRP3 inflammasome-IL-1β/IL-18 through inhibition of the production of ROS.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?