Journal of Media Business Studies, pages 1-24

Online newspaper subscriptions: using machine learning to reduce and understand customer churn

Lúcia Madeira Belchior 1
Nuno António 1
Elizabeth Fernandes 2
2
 
ISCTE – Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Avenida das Forças Armadas, Lisboa, Portugal
Publication typeJournal Article
Publication date2024-04-22
Q2
Q4
SJR0.489
CiteScore4.0
Impact factor0.6
ISSN16522354, 23762977

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Belchior L. M., António N., Fernandes E. Online newspaper subscriptions: using machine learning to reduce and understand customer churn // Journal of Media Business Studies. 2024. pp. 1-24.
GOST all authors (up to 50) Copy
Belchior L. M., António N., Fernandes E. Online newspaper subscriptions: using machine learning to reduce and understand customer churn // Journal of Media Business Studies. 2024. pp. 1-24.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1080/16522354.2024.2343638
UR - https://www.tandfonline.com/doi/full/10.1080/16522354.2024.2343638
TI - Online newspaper subscriptions: using machine learning to reduce and understand customer churn
T2 - Journal of Media Business Studies
AU - Belchior, Lúcia Madeira
AU - António, Nuno
AU - Fernandes, Elizabeth
PY - 2024
DA - 2024/04/22
PB - Taylor & Francis
SP - 1-24
SN - 1652-2354
SN - 2376-2977
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Belchior,
author = {Lúcia Madeira Belchior and Nuno António and Elizabeth Fernandes},
title = {Online newspaper subscriptions: using machine learning to reduce and understand customer churn},
journal = {Journal of Media Business Studies},
year = {2024},
publisher = {Taylor & Francis},
month = {apr},
url = {https://www.tandfonline.com/doi/full/10.1080/16522354.2024.2343638},
pages = {1--24},
doi = {10.1080/16522354.2024.2343638}
}
Found error?