Open Access
,
pages 1-18
Posterior propriety of an objective prior for generalized hierarchical normal linear models
3
Boehringer Ingelheim (China), Shanghai, People's Republic of China
|
Publication type: Journal Article
Publication date: 2022-07-30
scimago Q3
wos Q2
SJR: 0.319
CiteScore: 1.2
Impact factor: 1.3
ISSN: 24754269, 24754277
Statistics and Probability
Computational Theory and Mathematics
Applied Mathematics
Statistics, Probability and Uncertainty
Analysis
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
|
|
|
Lecture Notes in Electrical Engineering
1 publication, 100%
|
|
|
1
|
Publishers
|
1
|
|
|
Springer Nature
1 publication, 100%
|
|
|
1
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1
Total citations:
1
Citations from 2024:
1
(100%)
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Cong L. et al. Posterior propriety of an objective prior for generalized hierarchical normal linear models // Statistical Theory and Related Fields. 2022. pp. 1-18.
GOST all authors (up to 50)
Copy
Cong L., Sun D., Song C. Posterior propriety of an objective prior for generalized hierarchical normal linear models // Statistical Theory and Related Fields. 2022. pp. 1-18.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1080/24754269.2021.1978206
UR - https://doi.org/10.1080/24754269.2021.1978206
TI - Posterior propriety of an objective prior for generalized hierarchical normal linear models
T2 - Statistical Theory and Related Fields
AU - Cong, Lin
AU - Sun, Dongchu
AU - Song, Chengyuan
PY - 2022
DA - 2022/07/30
PB - Taylor & Francis
SP - 1-18
SN - 2475-4269
SN - 2475-4277
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2022_Cong,
author = {Lin Cong and Dongchu Sun and Chengyuan Song},
title = {Posterior propriety of an objective prior for generalized hierarchical normal linear models},
journal = {Statistical Theory and Related Fields},
year = {2022},
publisher = {Taylor & Francis},
month = {jul},
url = {https://doi.org/10.1080/24754269.2021.1978206},
pages = {1--18},
doi = {10.1080/24754269.2021.1978206}
}