Open Access
Open access

Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI

Publication typeJournal Article
Publication date2022-05-09
scimago Q3
wos Q2
SJR0.319
CiteScore1.2
Impact factor1.3
ISSN24754269, 24754277
Statistics and Probability
Computational Theory and Mathematics
Applied Mathematics
Statistics, Probability and Uncertainty
Analysis
Found 
Found 

Top-30

Journals

1
Computational Statistics and Data Analysis
1 publication, 50%
Statistics in Medicine
1 publication, 50%
1

Publishers

1
Elsevier
1 publication, 50%
Wiley
1 publication, 50%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2
Share
Cite this
GOST |
Cite this
GOST Copy
Banik A., MAITI T., Bender A. Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI // Statistical Theory and Related Fields. 2022. pp. 1-17.
GOST all authors (up to 50) Copy
Banik A., MAITI T., Bender A. Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI // Statistical Theory and Related Fields. 2022. pp. 1-17.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1080/24754269.2022.2064611
UR - https://doi.org/10.1080/24754269.2022.2064611
TI - Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI
T2 - Statistical Theory and Related Fields
AU - Banik, Asish
AU - MAITI, TAPS
AU - Bender, Andrew
PY - 2022
DA - 2022/05/09
PB - Taylor & Francis
SP - 1-17
SN - 2475-4269
SN - 2475-4277
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Banik,
author = {Asish Banik and TAPS MAITI and Andrew Bender},
title = {Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI},
journal = {Statistical Theory and Related Fields},
year = {2022},
publisher = {Taylor & Francis},
month = {may},
url = {https://doi.org/10.1080/24754269.2022.2064611},
pages = {1--17},
doi = {10.1080/24754269.2022.2064611}
}