том 23 издание 10 страницы 105009

Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane

G. Taton 1, 2, 3
D Lagrange 1, 2, 3
V. Conedera 1, 2, 3
L. Renaud 4, 5, 6
Carole Rossi 1, 2, 3
1
 
CNRS
2
 
LAAS
3
 
7 avenue du colonel Roche, F-31031 Toulouse, France
4
 
Dassault-Aviation
5
 
DGT/DTS/EN/PYRO
6
 
1 Avenue du Parc, F-95100 Argenteuil, France
Тип публикацииJournal Article
Дата публикации2013-09-10
scimago Q2
wos Q3
БС2
SJR0.496
CiteScore5.0
Impact factor2.1
ISSN09601317, 13616439
Electronic, Optical and Magnetic Materials
Electrical and Electronic Engineering
Mechanical Engineering
Mechanics of Materials
Краткое описание
We have developed a new nanothermite based polymeric electro-thermal initiator for non-contact ignition of a propellant. A reactive Al/CuO multilayer nanothermite resides on a 100 µm thick SU-8/PET (polyethyleneterephtalate) membrane to insulate the reactive layer from the silicon bulk substrate. When current is supplied to the initiator, the chemical reaction Al+CuO occurs and sparkles are spread to a distance of several millimeters. A micro-manufacturing process for fabricating the initiator is presented and the electrical behaviors of the ignition elements are also investigated. The characteristics of the initiator made on a 100 µm thick SU-8/PET membrane were compared to two bulk electro-thermal initiators: one on a silicon and one on a Pyrex substrate. The PET devices give 100% of Al/CuO ignition success for an electrical current >250 mA. Glass based reactive initiators give 100% of Al/CuO ignition success for an electrical current >500 mA. Reactive initiators directly on silicon cannot initiate even with a 4 A current. At low currents (<1 A), the initiation time is two orders of magnitude longer for Pyrex initiator compared to those obtained for PET initiator technology. We also observed that, the Al/CuO thermite film on PET membrane reacts within 1 ms (sparkles duration) whereas it reacts within 4 ms on Pyrex. The thermite reaction is 40 times greater in intensity using the PET substrate in comparison to Pyrex.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Journal of Applied Physics
8 публикаций, 9.88%
ACS applied materials & interfaces
8 публикаций, 9.88%
Sensors and Actuators, A: Physical
4 публикации, 4.94%
Propellants, Explosives, Pyrotechnics
4 публикации, 4.94%
Micromachines
3 публикации, 3.7%
Combustion and Flame
3 публикации, 3.7%
Chemical Engineering Journal
3 публикации, 3.7%
ACS Applied Nano Materials
3 публикации, 3.7%
RSC Advances
3 публикации, 3.7%
FirePhysChem
3 публикации, 3.7%
Nanomaterials
2 публикации, 2.47%
Nanoscale Research Letters
2 публикации, 2.47%
Nanotechnology
2 публикации, 2.47%
Review of Scientific Instruments
1 публикация, 1.23%
EPJ Applied Physics
1 публикация, 1.23%
Technologies
1 публикация, 1.23%
Molecules
1 публикация, 1.23%
Journal of Polymer Research
1 публикация, 1.23%
Journal of Materials Science
1 публикация, 1.23%
MRS Proceedings
1 публикация, 1.23%
Journal of Micromechanics and Microengineering
1 публикация, 1.23%
Journal of Physics: Conference Series
1 публикация, 1.23%
Materials and Design
1 публикация, 1.23%
Chemical Engineering Science
1 публикация, 1.23%
Defence Technology
1 публикация, 1.23%
Thin Solid Films
1 публикация, 1.23%
Applied Surface Science
1 публикация, 1.23%
Advanced Engineering Materials
1 публикация, 1.23%
Advanced Materials Interfaces
1 публикация, 1.23%
1
2
3
4
5
6
7
8

Издатели

5
10
15
20
Elsevier
20 публикаций, 24.69%
American Chemical Society (ACS)
16 публикаций, 19.75%
AIP Publishing
9 публикаций, 11.11%
Wiley
8 публикаций, 9.88%
MDPI
7 публикаций, 8.64%
Springer Nature
6 публикаций, 7.41%
IOP Publishing
4 публикации, 4.94%
Royal Society of Chemistry (RSC)
4 публикации, 4.94%
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 3.7%
Taylor & Francis
2 публикации, 2.47%
EDP Sciences
1 публикация, 1.23%
American Physical Society (APS)
1 публикация, 1.23%
5
10
15
20
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
81
Поделиться
Цитировать
ГОСТ |
Цитировать
Taton G. et al. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane // Journal of Micromechanics and Microengineering. 2013. Vol. 23. No. 10. p. 105009.
ГОСТ со всеми авторами (до 50) Скопировать
Taton G., Lagrange D., Conedera V., Renaud L., Rossi C. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane // Journal of Micromechanics and Microengineering. 2013. Vol. 23. No. 10. p. 105009.
RIS |
Цитировать
TY - JOUR
DO - 10.1088/0960-1317/23/10/105009
UR - https://doi.org/10.1088/0960-1317/23/10/105009
TI - Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane
T2 - Journal of Micromechanics and Microengineering
AU - Taton, G.
AU - Lagrange, D
AU - Conedera, V.
AU - Renaud, L.
AU - Rossi, Carole
PY - 2013
DA - 2013/09/10
PB - IOP Publishing
SP - 105009
IS - 10
VL - 23
SN - 0960-1317
SN - 1361-6439
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2013_Taton,
author = {G. Taton and D Lagrange and V. Conedera and L. Renaud and Carole Rossi},
title = {Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane},
journal = {Journal of Micromechanics and Microengineering},
year = {2013},
volume = {23},
publisher = {IOP Publishing},
month = {sep},
url = {https://doi.org/10.1088/0960-1317/23/10/105009},
number = {10},
pages = {105009},
doi = {10.1088/0960-1317/23/10/105009}
}
MLA
Цитировать
Taton, G., et al. “Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane.” Journal of Micromechanics and Microengineering, vol. 23, no. 10, Sep. 2013, p. 105009. https://doi.org/10.1088/0960-1317/23/10/105009.