Gradient descent for robust kernel-based regression
1
2
Тип публикации: Journal Article
Дата публикации: 2018-05-08
scimago Q1
wos Q1
БС1
SJR: 0.898
CiteScore: 3.3
Impact factor: 2.1
ISSN: 02665611, 13616420
Computer Science Applications
Mathematical Physics
Applied Mathematics
Theoretical Computer Science
Signal Processing
Краткое описание
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Entropy
2 публикации, 15.38%
|
|
|
Journal of Complexity
2 публикации, 15.38%
|
|
|
Neural Computation
1 публикация, 7.69%
|
|
|
Analysis and Applications
1 публикация, 7.69%
|
|
|
Inverse Problems
1 публикация, 7.69%
|
|
|
AIMS Mathematics
1 публикация, 7.69%
|
|
|
Foundations of Computational Mathematics
1 публикация, 7.69%
|
|
|
Neural Networks
1 публикация, 7.69%
|
|
|
Journal of Computational and Applied Mathematics
1 публикация, 7.69%
|
|
|
Applied and Computational Harmonic Analysis
1 публикация, 7.69%
|
|
|
Advances in Computational Mathematics
1 публикация, 7.69%
|
|
|
1
2
|
Издатели
|
1
2
3
4
5
|
|
|
Elsevier
5 публикаций, 38.46%
|
|
|
MDPI
2 публикации, 15.38%
|
|
|
Springer Nature
2 публикации, 15.38%
|
|
|
MIT Press
1 публикация, 7.69%
|
|
|
World Scientific
1 публикация, 7.69%
|
|
|
IOP Publishing
1 публикация, 7.69%
|
|
|
American Institute of Mathematical Sciences (AIMS)
1 публикация, 7.69%
|
|
|
1
2
3
4
5
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Всего цитирований:
13
Цитирований c 2024:
7
(53.85%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Guo Z., Hu T., Shi L. Gradient descent for robust kernel-based regression // Inverse Problems. 2018. Vol. 34. No. 6. p. 65009.
ГОСТ со всеми авторами (до 50)
Скопировать
Guo Z., Hu T., Shi L. Gradient descent for robust kernel-based regression // Inverse Problems. 2018. Vol. 34. No. 6. p. 65009.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1088/1361-6420/aabe55
UR - https://doi.org/10.1088/1361-6420/aabe55
TI - Gradient descent for robust kernel-based regression
T2 - Inverse Problems
AU - Guo, Zheng-Chu
AU - Hu, Ting
AU - Shi, Lei
PY - 2018
DA - 2018/05/08
PB - IOP Publishing
SP - 65009
IS - 6
VL - 34
SN - 0266-5611
SN - 1361-6420
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2018_Guo,
author = {Zheng-Chu Guo and Ting Hu and Lei Shi},
title = {Gradient descent for robust kernel-based regression},
journal = {Inverse Problems},
year = {2018},
volume = {34},
publisher = {IOP Publishing},
month = {may},
url = {https://doi.org/10.1088/1361-6420/aabe55},
number = {6},
pages = {65009},
doi = {10.1088/1361-6420/aabe55}
}
Цитировать
MLA
Скопировать
Guo, Zheng-Chu, et al. “Gradient descent for robust kernel-based regression.” Inverse Problems, vol. 34, no. 6, May. 2018, p. 65009. https://doi.org/10.1088/1361-6420/aabe55.