Inverse Problems, volume 41, issue 2, pages 25005

Adaptive Nesterov momentum method for solving ill-posed inverse problems

Publication typeJournal Article
Publication date2025-01-23
Journal: Inverse Problems
scimago Q1
SJR1.185
CiteScore4.4
Impact factor2
ISSN02665611, 13616420
Abstract

Nesterov's acceleration strategy is renowned in speeding up the convergence of gradient-based optimization algorithms and has been crucial in developing fast first order methods for well-posed convex optimization problems. Although Nesterov's accelerated gradient method has been adapted as an iterative regularization method for solving ill-posed inverse problems, no general convergence theory is available except for some special instances. In this paper, we develop an adaptive Nesterov momentum method for solving ill-posed inverse problems in Banach spaces, where the step-sizes and momentum coefficients are chosen through adaptive procedures with explicit formulas. Additionally, uniform convex regularization functions are incorporated to detect the features of sought solutions. Under standard conditions, we establish the regularization property of our method when terminated by the discrepancy principle. Various numerical experiments demonstrate that our method outperforms the Landweber-type method in terms of the required number of iterations and the computational time.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?