volume 32 issue 6 pages 63301

Roadmap on Data-Centric Materials Science

Sebastian Bauer 1, 2, 3
Peter Benner 4, 5
Tristan Bereau 6, 7
V. Blum 8, 9
Mario Boley 10, 11
Christian Carbogno 12, 13
C. Richard Catlow 14, 15, 16, 17
G. Dehm 18, 19
Sebastian Eibl 20, 21
R. Ernstorfer 22, 23
Ádám Fekete 24, 25
Lucas Foppa 12, 26
Paulo Rui Fernandes 27
Peter Fratzl 28
C. Freysoldt 18, 29
Baptiste Gault 18, 30, 31
Luca M. Ghiringhelli 12, 32, 33
Sajal Kumar Giri 34, 35
Anton Gladyshev 24, 36
Pawan Goyal 4, 37
Jason Hattrick-Simpers 38, 39
Lara Kabalan 14, 17, 40
P.I. Karpov 21, 41
Mohammad S. Khorrami 18, 29
Christoph Koch 24, 42
Sebastian Kokott 12, 43, 44
Thomas Kosch 24, 45
Igor Kowalec 14, 17, 46
Kurt Kremer 47, 48
Andreas Leitherer 12, 44, 49
Yue Li 18, 29
Christian H. Liebscher 18, 29
Andrew Logsdail 14, 50, 51
Zhongwei Lu 14, 17, 50
Phuc Luong 10, 52
Andreas Marek 21, 41
Florian Merz 53
Jaber Rezaei Mianroodi 18, 54
Jörg Neugebauer 18, 55
Zongrui Pei 56, 57
Thomas A. R. Purcell 12, 58, 59
Dierk Raabe 18, 60
Markus Rampp 41, 61
Jan M. Rost 64, 65
James Saal 66, 67
Ulf Saalmann 64, 68
Kasturi Narasimha Sasidhar 69
K N Sasidhar 18
Alaukik Saxena 18, 29
Luigi Sbailò 24, 25
Markus Scheidgen 24, 70
Marcel Schloz 24, 71
Daniel Francis Schmidt 10, 72
Simon Teshuva 10, 73
A Trunschke 12, 74
Ye Wei 75, 76
Gerhard Weikum 77, 78
R. Patrick Xian 38, 79
Yi Yao 12
Yiyu Yao 80
Junqi Yin 81, 82
Meng Zhao 24, 83
Matthias Scheffler 12, 81, 84
1
 
Helmholtz AI (Germany)
22
 
Technical Univ. of Berlin (Germany)
36
 
Department of Physics, Universität zu Berlin, Department of Physics, Berlin, 17716, GERMANY
42
 
Department of Physics, Universität zu Berlin, Department of Physics, Humboldt, 11776, GERMANY
43
 
Molecular Simulations from First Principles e.V., Berlin (Germany)
45
 
Department of Computer Science, Universität zu Berlin, Department of Computer Science, Berlin, 14154, GERMANY
46
 
Max Planck Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) (Germany)
48
 
Polymer Theory Group, Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, Mainz, 55128, GERMANY
50
 
Max Planck Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT)
52
 
Department of Data Science, AI, Department of Data Science, London, WC1X 0DW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
53
 
Lenovo HPC Innovation Center, Stuttgart (Germany)
55
 
Max-Planck-Institut fuer Eisenforschung GmbH, Postfach 140 444, D-40074 Duesseldorf, Dusseldorf, 67523, GERMANY
60
 
Department of Microstructure Physics and Metal Forming, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf, DÜSSELDORF, 40237, GERMANY
65
 
Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden, Dresden, 40182, GERMANY
66
 
Citrine Informatics, Inc., Redwood City, CA (United States)
67
 
Citrine Informatics Inc, Citrine Informatics, Inc, Redwood City, California, 94063-2483, UNITED STATES
68
 
Max-Planck-Institut fuer Physik komplexer Systeme, Nöthnitzer Str. 38, Dresden, 01187, GERMANY
70
 
Universität zu Berlin, Universität zu Berlin, Humboldt, 16004, GERMANY
71
 
Department of Physics, Universität zu Berlin, Department of Physics, Berlin, 39821, GERMANY
73
 
Department of Data Science, Monash University, Department of Data Science, Clayton, Victoria, 3800, AUSTRALIA
83
 
Department of Physics, Universität zu Berlin, Department of Physics, Berlin, 98241, GERMANY
Publication typeJournal Article
Publication date2024-07-03
scimago Q2
wos Q3
SJR0.519
CiteScore3.3
Impact factor2.4
ISSN09650393, 1361651X
Abstract

Science is and always has been based on data, but the terms ‘data-centric’ and the ‘4th paradigm of’ materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) and its subset Machine Learning (ML), has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research and experimental techniques like photoemission, and electron microscopy.
While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.

Found 
Found 

Top-30

Journals

1
2
Nature Reviews Materials
2 publications, 11.76%
Journal of Chemical Physics
2 publications, 11.76%
Catalysis Science and Technology
1 publication, 5.88%
Science advances
1 publication, 5.88%
Advanced Engineering Materials
1 publication, 5.88%
Journal of Non-Crystalline Solids
1 publication, 5.88%
Scripta Materialia
1 publication, 5.88%
Materials
1 publication, 5.88%
Nature Materials
1 publication, 5.88%
Composite Structures
1 publication, 5.88%
Digital Discovery
1 publication, 5.88%
Progress in Materials Science
1 publication, 5.88%
Machine Learning: Science and Technology
1 publication, 5.88%
ChemCatChem
1 publication, 5.88%
1
2

Publishers

1
2
3
4
Elsevier
4 publications, 23.53%
Springer Nature
3 publications, 17.65%
Wiley
3 publications, 17.65%
Royal Society of Chemistry (RSC)
2 publications, 11.76%
AIP Publishing
2 publications, 11.76%
American Association for the Advancement of Science (AAAS)
1 publication, 5.88%
MDPI
1 publication, 5.88%
IOP Publishing
1 publication, 5.88%
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
17
Share
Cite this
GOST |
Cite this
GOST Copy
Bauer S. et al. Roadmap on Data-Centric Materials Science // Modelling and Simulation in Materials Science and Engineering. 2024. Vol. 32. No. 6. p. 63301.
GOST all authors (up to 50) Copy
Bauer S. et al. Roadmap on Data-Centric Materials Science // Modelling and Simulation in Materials Science and Engineering. 2024. Vol. 32. No. 6. p. 63301.
RIS |
Cite this
RIS
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Bauer,
author = {Sebastian Bauer and Peter Benner and Tristan Bereau and V. Blum and Mario Boley and Christian Carbogno and C. Richard Catlow and G. Dehm and Sebastian Eibl and R. Ernstorfer and Ádám Fekete and Lucas Foppa and Paulo Rui Fernandes and Peter Fratzl and C. Freysoldt and Baptiste Gault and Luca M. Ghiringhelli and Sajal Kumar Giri and Anton Gladyshev and Pawan Goyal and Jason Hattrick-Simpers and Lara Kabalan and P.I. Karpov and Mohammad S. Khorrami and Christoph Koch and Sebastian Kokott and Thomas Kosch and Igor Kowalec and Kurt Kremer and Andreas Leitherer and Yue Li and Christian H. Liebscher and Andrew Logsdail and Zhongwei Lu and Phuc Luong and Andreas Marek and Florian Merz and Jaber Rezaei Mianroodi and Jörg Neugebauer and Zongrui Pei and Thomas A. R. Purcell and Dierk Raabe and Markus Rampp and MARIANA FONSECA ROSSI and Jan M. Rost and James Saal and Ulf Saalmann and Kasturi Narasimha Sasidhar and K N Sasidhar and Alaukik Saxena and others},
title = {Roadmap on Data-Centric Materials Science},
journal = {Modelling and Simulation in Materials Science and Engineering},
year = {2024},
volume = {32},
publisher = {IOP Publishing},
month = {jul},
url = {https://iopscience.iop.org/article/10.1088/1361-651X/ad4d0d},
number = {6},
pages = {63301},
doi = {10.1088/1361-651x/ad4d0d}
}
MLA
Cite this
MLA Copy
Bauer, Stefan, et al. “Roadmap on Data-Centric Materials Science.” Modelling and Simulation in Materials Science and Engineering, vol. 32, no. 6, Jul. 2024, p. 63301. https://iopscience.iop.org/article/10.1088/1361-651X/ad4d0d.