Roadmap on quantum nanotechnologies
Arne Laucht
1
,
F. Hohls
2
,
Niels Ubbelohde
2
,
M. F. Gonzalez-Zalba
3
,
DAVID H. REILLY
4
,
Søren Stobbe
5
,
Tim Schröder
6, 7
,
P. Scarlino
8
,
Jonne V. Koski
8
,
Andrew Dzurak
9
,
Chih Hwan Yang
9
,
Jun Yoneda
9
,
Ferdinand Kuemmeth
10
,
Hendrik Bluhm
11
,
Jarryd Pla
12
,
Charles D Hill
13
,
Joseph Salfi
14
,
A. Oiwa
15
,
Juha T. Muhonen
16
,
Ewold Verhagen
17
,
M.D. LaHaye
18, 19
,
Hyunho Kim
20, 21
,
Adam W. Tsen
22
,
Dimitrie Culcer
12
,
Attila Geresdi
23
,
Jan A Mol
24
,
Varun Mohan
25
,
Prashant K Jain
26
,
J. Baugh
22
3
Quantum Motion Technologies
12
University of New South Wales,
|
17
AMOLF
19
Present Address: United States Air Force Research Laboratory, Rome, NY 13441, United States of America
|
Тип публикации: Journal Article
Дата публикации: 2021-02-05
scimago Q2
wos Q2
БС1
SJR: 0.597
CiteScore: 6.2
Impact factor: 2.8
ISSN: 09574484, 13616528
PubMed ID:
33543734
General Chemistry
General Materials Science
Electrical and Electronic Engineering
Mechanical Engineering
Bioengineering
Mechanics of Materials
Краткое описание
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
|
|
|
Physical Review B
6 публикаций, 6.59%
|
|
|
Physical Review Applied
5 публикаций, 5.49%
|
|
|
Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
4 публикации, 4.4%
|
|
|
Physical Review A
3 публикации, 3.3%
|
|
|
Physical Review Letters
3 публикации, 3.3%
|
|
|
Physical Review Research
3 публикации, 3.3%
|
|
|
Applied Physics Letters
2 публикации, 2.2%
|
|
|
AVS Quantum Science
2 публикации, 2.2%
|
|
|
Communications Physics
2 публикации, 2.2%
|
|
|
Solid-State Electronics
2 публикации, 2.2%
|
|
|
Advanced Materials
2 публикации, 2.2%
|
|
|
Heliyon
2 публикации, 2.2%
|
|
|
Journal of Applied Physics
1 публикация, 1.1%
|
|
|
Quantum Reports
1 публикация, 1.1%
|
|
|
J — Multidisciplinary Scientific Journal
1 публикация, 1.1%
|
|
|
Materials
1 публикация, 1.1%
|
|
|
MRS Bulletin
1 публикация, 1.1%
|
|
|
Nature Electronics
1 публикация, 1.1%
|
|
|
Journal of Advanced Ceramics
1 публикация, 1.1%
|
|
|
Memories - Materials Devices Circuits and Systems
1 публикация, 1.1%
|
|
|
Optik
1 публикация, 1.1%
|
|
|
Journal Physics D: Applied Physics
1 публикация, 1.1%
|
|
|
Quantum Science and Technology
1 публикация, 1.1%
|
|
|
Entropy
1 публикация, 1.1%
|
|
|
Advanced Functional Materials
1 публикация, 1.1%
|
|
|
Applied Physics Reviews
1 публикация, 1.1%
|
|
|
ACS applied materials & interfaces
1 публикация, 1.1%
|
|
|
Nano Futures
1 публикация, 1.1%
|
|
|
IEICE Transactions on Electronics
1 публикация, 1.1%
|
|
|
1
2
3
4
5
6
|
Издатели
|
5
10
15
20
25
|
|
|
American Physical Society (APS)
21 публикация, 23.08%
|
|
|
Springer Nature
13 публикаций, 14.29%
|
|
|
Elsevier
11 публикаций, 12.09%
|
|
|
IOP Publishing
9 публикаций, 9.89%
|
|
|
MDPI
7 публикаций, 7.69%
|
|
|
AIP Publishing
5 публикаций, 5.49%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 5.49%
|
|
|
Wiley
4 публикации, 4.4%
|
|
|
American Chemical Society (ACS)
3 публикации, 3.3%
|
|
|
Optica Publishing Group
3 публикации, 3.3%
|
|
|
American Vacuum Society
2 публикации, 2.2%
|
|
|
Cambridge University Press
1 публикация, 1.1%
|
|
|
Tsinghua University Press
1 публикация, 1.1%
|
|
|
Japan Society of Applied Physics
1 публикация, 1.1%
|
|
|
Institute of Electronics, Information and Communications Engineers (IEICE)
1 публикация, 1.1%
|
|
|
IGI Global
1 публикация, 1.1%
|
|
|
World Scientific
1 публикация, 1.1%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 1.1%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
91
Всего цитирований:
91
Цитирований c 2024:
49
(53.84%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Laucht A. et al. Roadmap on quantum nanotechnologies // Nanotechnology. 2021. Vol. 32. No. 16. p. 162003.
ГОСТ со всеми авторами (до 50)
Скопировать
Laucht A., Hohls F., Ubbelohde N., Gonzalez-Zalba M., REILLY D. H., Stobbe S., Schröder T., Scarlino P., Koski J. V., Dzurak A., Yang C. H., Yoneda J., Kuemmeth F., Bluhm H., Pla J., Hill C. D., Salfi J., Oiwa A., Muhonen J. T., Verhagen E., LaHaye M., Kim H., Tsen A. W., Culcer D., Geresdi A., Mol J. A., Mohan V., Jain P. K., Baugh J. Roadmap on quantum nanotechnologies // Nanotechnology. 2021. Vol. 32. No. 16. p. 162003.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1088/1361-6528/abb333
UR - https://doi.org/10.1088/1361-6528/abb333
TI - Roadmap on quantum nanotechnologies
T2 - Nanotechnology
AU - Laucht, Arne
AU - Hohls, F.
AU - Ubbelohde, Niels
AU - Gonzalez-Zalba, M. F.
AU - REILLY, DAVID H.
AU - Stobbe, Søren
AU - Schröder, Tim
AU - Scarlino, P.
AU - Koski, Jonne V.
AU - Dzurak, Andrew
AU - Yang, Chih Hwan
AU - Yoneda, Jun
AU - Kuemmeth, Ferdinand
AU - Bluhm, Hendrik
AU - Pla, Jarryd
AU - Hill, Charles D
AU - Salfi, Joseph
AU - Oiwa, A.
AU - Muhonen, Juha T.
AU - Verhagen, Ewold
AU - LaHaye, M.D.
AU - Kim, Hyunho
AU - Tsen, Adam W.
AU - Culcer, Dimitrie
AU - Geresdi, Attila
AU - Mol, Jan A
AU - Mohan, Varun
AU - Jain, Prashant K
AU - Baugh, J.
PY - 2021
DA - 2021/02/05
PB - IOP Publishing
SP - 162003
IS - 16
VL - 32
PMID - 33543734
SN - 0957-4484
SN - 1361-6528
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Laucht,
author = {Arne Laucht and F. Hohls and Niels Ubbelohde and M. F. Gonzalez-Zalba and DAVID H. REILLY and Søren Stobbe and Tim Schröder and P. Scarlino and Jonne V. Koski and Andrew Dzurak and Chih Hwan Yang and Jun Yoneda and Ferdinand Kuemmeth and Hendrik Bluhm and Jarryd Pla and Charles D Hill and Joseph Salfi and A. Oiwa and Juha T. Muhonen and Ewold Verhagen and M.D. LaHaye and Hyunho Kim and Adam W. Tsen and Dimitrie Culcer and Attila Geresdi and Jan A Mol and Varun Mohan and Prashant K Jain and J. Baugh},
title = {Roadmap on quantum nanotechnologies},
journal = {Nanotechnology},
year = {2021},
volume = {32},
publisher = {IOP Publishing},
month = {feb},
url = {https://doi.org/10.1088/1361-6528/abb333},
number = {16},
pages = {162003},
doi = {10.1088/1361-6528/abb333}
}
Цитировать
MLA
Скопировать
Laucht, Arne, et al. “Roadmap on quantum nanotechnologies.” Nanotechnology, vol. 32, no. 16, Feb. 2021, p. 162003. https://doi.org/10.1088/1361-6528/abb333.