Open Access
Open access
Environmental Research Letters, volume 11, issue 7, pages 74029

Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%

Publication typeJournal Article
Publication date2016-07-01
scimago Q1
SJR2.134
CiteScore11.9
Impact factor5.8
ISSN17489326, 17489318
Public Health, Environmental and Occupational Health
Renewable Energy, Sustainability and the Environment
General Environmental Science
Abstract
Due to its prevalence in modern infrastructure, concrete is experiencing the most rapid increase in consumption among globally common structural materials; however, the production of concrete results in approximately 8.6% of all anthropogenic CO2 emissions. Many methods have been developed to reduce the greenhouse gas emissions associated with the production of concrete. These methods range from the replacement of inefficient manufacturing equipment to alternative binders and the use of breakthrough technologies; nevertheless, many of these methods have barriers to implementation. In this research, we examine the extent to which the increased use of several currently implemented methods can reduce the greenhouse gas emissions in concrete material production without requiring new technologies, changes in production, or novel material use. This research shows that, through increased use of common supplementary cementitious materials, appropriate selection of proportions for cement replacement, and increased concrete design age, 24% of greenhouse gas emissions from global concrete production or 650 million tonnes (Mt) CO2-eq can be eliminated annually.

Top-30

Journals

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40

Publishers

20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?