Journal of Physics Condensed Matter, volume 33, issue 11, pages 115602

Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid

Publication typeJournal Article
Publication date2021-01-06
Quartile SCImago
Q2
Quartile WOS
Q3
Impact factor2.7
ISSN09538984, 1361648X
Condensed Matter Physics
General Materials Science
Abstract

We consider a non-chiral Luttinger liquid in the presence of a backscattering Hamiltonian which has an extended range. Right/left moving fermions at a given location can thus be converted as left/right moving fermions at a different location, within a specific range. We perform a momentum shell renormalization group treatment which gives the evolution of the relative degrees of freedom of this Hamiltonian contribution under the renormalization flow, and we study a few realistic examples of this extended backscattering Hamiltonian. We find that, for repulsive Coulomb interaction in the Luttinger liquid, any such Hamiltonian contribution evolves into a delta-like scalar potential upon renormalization to a zero temperature cutoff. On the opposite, for attractive couplings, the amplitude of this kinetic Hamiltonian is suppressed, rendering the junction fully transparent. As the renormalization procedure may have to be stopped because of experimental constraints such as finite temperature, we predict the actual spatial shape of the kinetic Hamiltonian at different stages of the renormalization procedure, as a function of the position and the Luttinger interaction parameter, and show that it undergoes structural changes. This renormalized kinetic Hamiltonian has thus to be used as an input for the perturbative calculation of the current, for which we provide analytic expressions in imaginary time. We discuss the experimental relevance of this work by looking at one-dimensional systems consisting of carbon nanotubes or semiconductor nanowires.

Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Popoff A. et al. Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid // Journal of Physics Condensed Matter. 2021. Vol. 33. No. 11. p. 115602.
GOST all authors (up to 50) Copy
Popoff A., LEBEDEV A., Raymond L., Jonckheere T., Rech J., Martin T. J. Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid // Journal of Physics Condensed Matter. 2021. Vol. 33. No. 11. p. 115602.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1088/1361-648X/abd525
UR - https://doi.org/10.1088%2F1361-648X%2Fabd525
TI - Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid
T2 - Journal of Physics Condensed Matter
AU - Popoff, A.
AU - LEBEDEV, A.V.
AU - Raymond, L.
AU - Jonckheere, T.
AU - Rech, Jérôme
AU - Martin, Thomas J.
PY - 2021
DA - 2021/01/06 00:00:00
PB - IOP Publishing
SP - 115602
IS - 11
VL - 33
SN - 0953-8984
SN - 1361-648X
ER -
BibTex |
Cite this
BibTex Copy
@article{2021_Popoff,
author = {A. Popoff and A.V. LEBEDEV and L. Raymond and T. Jonckheere and Jérôme Rech and Thomas J. Martin},
title = {Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid},
journal = {Journal of Physics Condensed Matter},
year = {2021},
volume = {33},
publisher = {IOP Publishing},
month = {jan},
url = {https://doi.org/10.1088%2F1361-648X%2Fabd525},
number = {11},
pages = {115602},
doi = {10.1088/1361-648X/abd525}
}
MLA
Cite this
MLA Copy
Popoff, A., et al. “Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid.” Journal of Physics Condensed Matter, vol. 33, no. 11, Jan. 2021, p. 115602. https://doi.org/10.1088%2F1361-648X%2Fabd525.
Found error?