2025 Roadmap on Nanoscale Superconductivity for Quantum Technologies

Publication typeJournal Article
Publication date2025-12-22
scimago Q1
wos Q2
SJR1.095
CiteScore6.7
Impact factor4.2
ISSN09532048, 13616668
Abstract

In 2025, the Year of Quantum Science and Technology (https://quantum2025.org/), we celebrate a century of quantum mechanics, witnessing a surge in activities that illuminate its inherent strangeness and drive technological innovation. Superconductivity, discovered 114 years ago, stands as a prime example, offering direct and compelling evidence of macroscopic quantum phenomena. Beyond its ability to conduct immense currents without loss, superconductivity reveals the quantum realm operating on a scale we can directly observe and manipulate. The macroscopic quantum coherence, where an ensemble of particles is described by a single wave function, leads to remarkable consequences: dissipation-less current and flux quantization – the basic properties exploited in superconducting quantum circuit fabrication. This Roadmap has been inspired by intensive discussions and collaborations emerging from the European Cooperation in Science & Technology COST-Action CA21144 (SuperQuMap – Superconducting Nanodevices and Quantum Materials for Coherent Manipulation). The aim of the COST Action SuperQuMap is to establish a strong European network centered on macroscopic quantum behavior in superconductors, bringing together groups of different backgrounds and more than 30 countries. The roadmap outlines the network’s concrete activities, driving advancements in superconductor-based quantum technologies and charting future directions. Spanning fundamental research to practical applications, the roadmap incorporates insights from industry partners developing quantum computation. It begins by exploring quantum materials, highlighting how topology and electronic correlations could catalyze a quantum leap in technology. We then delve into manipulating the superconducting phase, leveraging advancements in magnetism, 3D fabrication, and tunable correlations. Further, we showcase the advanced microscopy techniques—such as angle-resolved photoemission spectroscopy and scanning probes—used to visualize quantum behavior. Finally, and crucially, we detail the quantum devices developed within the network, and their transformative impact on modern quantum computing approaches.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Dobrovolskiy O. V. et al. 2025 Roadmap on Nanoscale Superconductivity for Quantum Technologies // Superconductor Science and Technology. 2025.
GOST all authors (up to 50) Copy
Dobrovolskiy O. V. et al. 2025 Roadmap on Nanoscale Superconductivity for Quantum Technologies // Superconductor Science and Technology. 2025.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1088/1361-6668/ae3030
UR - https://iopscience.iop.org/article/10.1088/1361-6668/ae3030
TI - 2025 Roadmap on Nanoscale Superconductivity for Quantum Technologies
T2 - Superconductor Science and Technology
AU - Dobrovolskiy, O. V.
AU - Suderow, Hermann
AU - Tafuri, Francesco
AU - Black-Schaffer, Annica
AU - Lado, Jose L.
AU - Sudbo, Asle
AU - Stornaiuolo, D.
AU - Li, Chuan
AU - Böhmer, Anna E
AU - Tran, Lan Maria
AU - Zaleski, Andrzej J
AU - Crisan, Adrian
AU - Polichetti, Massimiliano
AU - Galluzzi, A
AU - Gencer, Ali
AU - Aichner, Bernd
AU - Barisic, Neven
AU - Lang, Wolfgang
AU - Samuely, Tomas
AU - GMITRA, MARTIN
AU - Cren, Tristan
AU - Calandra, Matteo
AU - Samuely, Peter
AU - Custers, Jeroen
AU - Cordoba, Rosa
AU - Fomin, Vladimir N.
AU - Poccia, Nicola
AU - Szabó, Pavol
AU - Porrati, Fabrizio
AU - Kakazei, G.
AU - Aarts, J
AU - Robinson, J. W. A.
AU - Villegas, Javier
AU - Althammer, Matthias
AU - Huebl, Hans
AU - Kamra, Akashdeep
AU - Weiler, Mathias
AU - Dil, J.H.
AU - Yevtushynsky, Daniil
AU - Kalisky, Beena
AU - Anahory, Yonathan
AU - Bending, Simon J
AU - Liljeroth, P.
AU - Hassanien, Abdou
AU - Guillamón, Isabel
AU - Herrera, Edwin
AU - Silhanek, A.V.
AU - Van de Vondel, Joris
AU - Palau, A.
AU - Charaev, Ilya
AU - Sidorova, M.V.
AU - Lombardi, F.
AU - Bauch, Thilo
AU - Feuillet-Palma, C.
AU - Stolyarov, Vasily
AU - Roditchev, Dimitri
AU - Krasnov, Vladimir M
AU - Hampel, Benedikt
AU - Martinez Perez, Maria Jose
AU - Sese, Javier
AU - Koelle, Dieter
AU - Poletto, Stefano
AU - Bruno, Alessandro
AU - Massarotti, Davide
PY - 2025
DA - 2025/12/22
PB - IOP Publishing
SN - 0953-2048
SN - 1361-6668
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Dobrovolskiy,
author = {O. V. Dobrovolskiy and Hermann Suderow and Francesco Tafuri and Annica Black-Schaffer and Jose L. Lado and Asle Sudbo and D. Stornaiuolo and Chuan Li and Anna E Böhmer and Lan Maria Tran and Andrzej J Zaleski and Adrian Crisan and Massimiliano Polichetti and A Galluzzi and Ali Gencer and Bernd Aichner and Neven Barisic and Wolfgang Lang and Tomas Samuely and MARTIN GMITRA and Tristan Cren and Matteo Calandra and Peter Samuely and Jeroen Custers and Rosa Cordoba and Vladimir N. Fomin and Nicola Poccia and Pavol Szabó and Fabrizio Porrati and G. Kakazei and J Aarts and J. W. A. Robinson and Javier Villegas and Matthias Althammer and Hans Huebl and Akashdeep Kamra and Mathias Weiler and J.H. Dil and Daniil Yevtushynsky and Beena Kalisky and Yonathan Anahory and Simon J Bending and P. Liljeroth and Abdou Hassanien and Isabel Guillamón and Edwin Herrera and A.V. Silhanek and Joris Van de Vondel and A. Palau and Ilya Charaev and others},
title = {2025 Roadmap on Nanoscale Superconductivity for Quantum Technologies},
journal = {Superconductor Science and Technology},
year = {2025},
publisher = {IOP Publishing},
month = {dec},
url = {https://iopscience.iop.org/article/10.1088/1361-6668/ae3030},
doi = {10.1088/1361-6668/ae3030}
}