том 2025 издание 5 страницы 53210

Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes

Тип публикацииJournal Article
Дата публикации2025-05-01
scimago Q3
wos Q2
БС1
SJR0.373
CiteScore4.5
Impact factor1.9
ISSN17425468
Краткое описание

Within the Wilson RG of ‘incomplete integration’ as a function of the effective RG-time t, the non-linear differential RG-flow for the energy E t [ ϕ ( . ) ] translates for the probability distribution P t [ ϕ ( . ) ] e E t [ ϕ ( . ) ] into the linear Fokker–Planck RG-flow associated to independent non-identical Ornstein–Uhlenbeck processes for the Fourier modes. The corresponding Langevin stochastic differential equations for the real-space field ϕ t ( x ) have been recently interpreted by Carosso as genuine infinitesimal coarsening-transformations that are the analog of spin-blocking, and whose irreversible character is essential to overcome the paradox of the naive description of the Wegner–Morris Continuity-equation for the RG-flow as a meaningless infinitesimal change of variables in the partition function integral. This interpretation suggests to consider new RG-schemes, in particular the Carosso RG where the Langevin SDE corresponds to the stochastic heat equation also known as the Edwards–Wilkinson dynamics. After a pedestrian self-contained introduction to this stochastic formulation of RG-flows, we focus on the case where the field theory is defined on the large volume Ld with periodic boundary conditions, in order to distinguish between extensive and intensives observables while keeping the translation-invariance. Since the empirical magnetization m e 1 L d L d d d x ϕ ( x ) is an intensive variable corresponding to the zero-momentum Fourier coefficient of the field, its probability distribution p L ( m e ) can be obtained from the gradual integration over all the other Fourier coefficients associated to non-vanishing-momenta via an appropriate adaptation of the Carosso stochastic RG, in order to obtain the large deviation properties with respect to the volume Ld .

Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
MONTHUS C. Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes // Journal of Statistical Mechanics: Theory and Experiment. 2025. Vol. 2025. No. 5. p. 53210.
ГОСТ со всеми авторами (до 50) Скопировать
MONTHUS C. Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes // Journal of Statistical Mechanics: Theory and Experiment. 2025. Vol. 2025. No. 5. p. 53210.
RIS |
Цитировать
TY - JOUR
DO - 10.1088/1742-5468/add512
UR - https://iopscience.iop.org/article/10.1088/1742-5468/add512
TI - Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes
T2 - Journal of Statistical Mechanics: Theory and Experiment
AU - MONTHUS, CÉCILE
PY - 2025
DA - 2025/05/01
PB - IOP Publishing
SP - 53210
IS - 5
VL - 2025
SN - 1742-5468
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_MONTHUS,
author = {CÉCILE MONTHUS},
title = {Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes},
journal = {Journal of Statistical Mechanics: Theory and Experiment},
year = {2025},
volume = {2025},
publisher = {IOP Publishing},
month = {may},
url = {https://iopscience.iop.org/article/10.1088/1742-5468/add512},
number = {5},
pages = {53210},
doi = {10.1088/1742-5468/add512}
}
MLA
Цитировать
MONTHUS, CÉCILE. “Journey from the Wilson exact RG towards the Wegner–Morris Fokker–Planck RG and the Carosso field-coarsening via Langevin stochastic processes.” Journal of Statistical Mechanics: Theory and Experiment, vol. 2025, no. 5, May. 2025, p. 53210. https://iopscience.iop.org/article/10.1088/1742-5468/add512.