volume 26 issue 21 pages 616-634

A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations

Ali Baklouti 1
Hidénori Fujiwara 2
Jean Ludwig 3
2
 
Faculté de Science et Technologie pour l’Humanité, Université de Kinki, Iizuka 820-8555, Japan
3
 
Institut Elie Cartan de Lorraine, Université de Lorraine, Site de Metz, 3, rue Augustin Fresnel, 57000 Metz, Technopole Metz France
Publication typeJournal Article
Publication date2022-06-02
scimago Q1
wos Q3
SJR0.989
CiteScore1.4
Impact factor0.6
ISSN10884165
Mathematics (miscellaneous)
Abstract

Let G G be a connected and simply connected nilpotent Lie group, K K an analytic subgroup of G G and π \pi an irreducible unitary representation of G G whose coadjoint orbit of G G is denoted by Ω ( π ) \Omega (\pi ) . Let U ( g ) \mathscr U(\mathfrak g) be the enveloping algebra of g C {\mathfrak g}_{\mathbb C} , g \mathfrak g designating the Lie algebra of G G . We consider the algebra D π ( G ) K ( U ( g ) / ker ( π ) ) K D_{\pi }(G)^K \simeq \left (\mathscr U(\mathfrak g)/\operatorname {ker}(\pi )\right )^K of the K K -invariant elements of U ( g ) / ker ( π ) \mathscr U(\mathfrak g)/\operatorname {ker}(\pi ) . It turns out that this algebra is commutative if and only if the restriction π | K \pi |_K of π \pi to K K has finite multiplicities (cf. Baklouti and Fujiwara [J. Math. Pures Appl. (9) 83 (2004), pp. 137-161]). In this article we suppose this eventuality and we provide a proof of the polynomial conjecture asserting that D π ( G ) K D_{\pi }(G)^K is isomorphic to the algebra C [ Ω ( π ) ] K \mathbb C[\Omega (\pi )]^K of K K -invariant polynomial functions on Ω ( π ) \Omega (\pi ) . The conjecture was partially solved in our previous works (Baklouti, Fujiwara, and Ludwig [Bull. Sci. Math. 129 (2005), pp. 187-209]; J. Lie Theory 29 (2019), pp. 311-341).

Found 
Found 

Top-30

Journals

1
Transactions of the American Mathematical Society
1 publication, 33.33%
International Journal of Mathematics
1 publication, 33.33%
Progress in Mathematics
1 publication, 33.33%
1

Publishers

1
American Mathematical Society
1 publication, 33.33%
World Scientific
1 publication, 33.33%
Springer Nature
1 publication, 33.33%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Cite this
GOST |
Cite this
GOST Copy
Baklouti A., Fujiwara H., Ludwig J. A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations // Representation Theory. 2022. Vol. 26. No. 21. pp. 616-634.
GOST all authors (up to 50) Copy
Baklouti A., Fujiwara H., Ludwig J. A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations // Representation Theory. 2022. Vol. 26. No. 21. pp. 616-634.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1090/ert/611
UR - https://doi.org/10.1090/ert/611
TI - A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations
T2 - Representation Theory
AU - Baklouti, Ali
AU - Fujiwara, Hidénori
AU - Ludwig, Jean
PY - 2022
DA - 2022/06/02
PB - American Mathematical Society
SP - 616-634
IS - 21
VL - 26
SN - 1088-4165
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Baklouti,
author = {Ali Baklouti and Hidénori Fujiwara and Jean Ludwig},
title = {A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations},
journal = {Representation Theory},
year = {2022},
volume = {26},
publisher = {American Mathematical Society},
month = {jun},
url = {https://doi.org/10.1090/ert/611},
number = {21},
pages = {616--634},
doi = {10.1090/ert/611}
}
MLA
Cite this
MLA Copy
Baklouti, Ali, et al. “A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations.” Representation Theory, vol. 26, no. 21, Jun. 2022, pp. 616-634. https://doi.org/10.1090/ert/611.