Brain, volume 145, issue 3, pages 964-978

Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state

Semra Smajić 1
Cesar A Prada Medina 2
Zied Landoulsi 1
Jenny Ghelfi 1
Sylvie Delcambre 1
Carola Dietrich 2
Javier Jarazo 1, 3
Jana Henck 2
Balachandran Saranya 4
Sinthuja Pachchek 1
Christopher M. Morris 5
Antony Paul 1
Bernd Timmermann 2
Sascha Sauer 6
Sandro L. Pereira 1
Jens C. Schwamborn 1, 3
Patrick C. May 1
Anne Grünewald 1, 7
Malte Spielmann 2, 4, 8
Show full list: 19 authors
Publication typeJournal Article
Publication date2021-12-17
Journal: Brain
scimago Q1
SJR4.689
CiteScore20.3
Impact factor10.6
ISSN00068950, 14602156
Neurology (clinical)
Abstract

Idiopathic Parkinson’s disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease aetiology remains largely unknown. To date, Parkinson’s disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson’s disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson’s disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson’s disease using the latest genome-wide association study.

We profiled >41 000 single-nuclei transcriptomes of post-mortem midbrain from six idiopathic Parkinson’s disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabelling of the same tissues. Moreover, we analysed Parkinson’s disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in idiopathic Parkinson’s disease midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson’s disease patients. Moreover, nigral idiopathic Parkinson’s disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson’s disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson’s disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson’s disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson’s disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson’s disease microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB and HSP90AA1.

Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson’s disease midbrain, which highlights a disease-specific neuronal cell cluster as well as ‘pan-glial’ activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signalling and immunomodulatory treatments in Parkinson’s disease.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
2
4
6
8
10
12

Publishers

10
20
30
40
50
60
70
80
90
10
20
30
40
50
60
70
80
90
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?