An Advanced EEG Motion Artifacts Eradication Algorithm

Piyush Kumar Shukla 1
Vandana Roy 2
Prashant Kumar Shukla 3
Anoop Kumar Chaturvedi 4
Aumreesh Kumar Saxena 5
Manish Maheshwari 6
Parashu Ram Pal 7
2
 
Associate Professor, Department of Electronics & Communication, Gyan Ganga Institute of Technology & Sciences (GGITS), Jabalpur 482002, India
4
 
Associate Professor, Computer Science & Engineering Department, Lakshmi Narain College of Technology (LNCT), Bhopal 462021, M.P., India
5
 
Associate Professor & HoD Department Information Technology, SIRT, Bhopal 462041, M.P., India
6
 
Professor in Computer Science and Applications, Makhanlal Chaturvedi National University of Journalism and Communication, Bhopal 462004, M.P., India
7
 
Professor, SAGE University, Bhopal- 462043, Madhya Pradesh, India
Тип публикацииJournal Article
Дата публикации2021-12-18
scimago Q2
wos Q3
БС2
SJR0.482
CiteScore4.4
Impact factor1.5
ISSN00104620, 14602067
General Computer Science
Краткое описание

The electroencephalography (EEG) signal is corrupted with some non-cerebral activities due to patient movement during signal measurement. These non-cerebral activities are termed as artifacts, which may diminish the superiority of acquired EEG signal statistics. The state of the art artifact elimination approaches applied canonical correlation analysis (CCA) for confiscating EEG motion artifacts accompanied by ensemble empirical mode decomposition (EEMD). An improved cascaded approach based on Gaussian elimination CCA (GECCA) and EEMD is applied to suppress EEG artifacts effectively. However, in a highly noisy environment, a novel addition of median filter before the GECCA algorithm is suggested for improving the accuracy of onslaught the EEG signal. The median filter is opted due to its edge preserving nature and speed. This proposed approach is appraised using efficacy grounds for instance Del signal to noise ratio, Lambda (λ), root mean square error and receiver operating characteristic (ROC) parameters and verified contrary to presently obtainable EEG artifacts exclusion methods. The primary concern is to improve the efficacy and precision of the proposed artifact elimination technique. The elapsed time is also calculated to evaluate the computation efficiency. Results show that the proposed algorithm is appropriate to be used as an addition to existing algorithms in use.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
Lecture Notes in Networks and Systems
6 публикаций, 3.21%
Computational Intelligence and Neuroscience
5 публикаций, 2.67%
Journal of Healthcare Engineering
4 публикации, 2.14%
SN Computer Science
4 публикации, 2.14%
Wireless Communications and Mobile Computing
2 публикации, 1.07%
Lecture Notes in Electrical Engineering
2 публикации, 1.07%
Sensors
1 публикация, 0.53%
Journal of King Saud University - Computer and Information Sciences
1 публикация, 0.53%
Neural Computing and Applications
1 публикация, 0.53%
Journal of Food Quality
1 публикация, 0.53%
BioMed Research International
1 публикация, 0.53%
Signals
1 публикация, 0.53%
Electronics (Switzerland)
1 публикация, 0.53%
Engineering Applications of Artificial Intelligence
1 публикация, 0.53%
Measurement: Journal of the International Measurement Confederation
1 публикация, 0.53%
Studies in Computational Intelligence
1 публикация, 0.53%
1
2
3
4
5
6

Издатели

20
40
60
80
100
120
140
160
Institute of Electrical and Electronics Engineers (IEEE)
153 публикации, 81.82%
Springer Nature
14 публикаций, 7.49%
Hindawi Limited
12 публикаций, 6.42%
MDPI
3 публикации, 1.6%
Elsevier
2 публикации, 1.07%
King Saud University
1 публикация, 0.53%
Wiley
1 публикация, 0.53%
20
40
60
80
100
120
140
160
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
187
Поделиться
Цитировать
ГОСТ |
Цитировать
Shukla P. K. et al. An Advanced EEG Motion Artifacts Eradication Algorithm // Computer Journal. 2021.
ГОСТ со всеми авторами (до 50) Скопировать
Shukla P. K., Roy V., Shukla P. K., Chaturvedi A. K., Saxena A. K., Maheshwari M., Pal P. R. An Advanced EEG Motion Artifacts Eradication Algorithm // Computer Journal. 2021.
RIS |
Цитировать
TY - JOUR
DO - 10.1093/comjnl/bxab170
UR - https://doi.org/10.1093/comjnl/bxab170
TI - An Advanced EEG Motion Artifacts Eradication Algorithm
T2 - Computer Journal
AU - Shukla, Piyush Kumar
AU - Roy, Vandana
AU - Shukla, Prashant Kumar
AU - Chaturvedi, Anoop Kumar
AU - Saxena, Aumreesh Kumar
AU - Maheshwari, Manish
AU - Pal, Parashu Ram
PY - 2021
DA - 2021/12/18
PB - Oxford University Press
SN - 0010-4620
SN - 1460-2067
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Shukla,
author = {Piyush Kumar Shukla and Vandana Roy and Prashant Kumar Shukla and Anoop Kumar Chaturvedi and Aumreesh Kumar Saxena and Manish Maheshwari and Parashu Ram Pal},
title = {An Advanced EEG Motion Artifacts Eradication Algorithm},
journal = {Computer Journal},
year = {2021},
publisher = {Oxford University Press},
month = {dec},
url = {https://doi.org/10.1093/comjnl/bxab170},
doi = {10.1093/comjnl/bxab170}
}