Comprehensive full-vessel segmentation and volumetric plaque quantification for intracoronary optical coherence tomography using deep learning
Background
Intracoronary optical coherence tomography (OCT) provides detailed information on coronary lesions, but interpretation of OCT images is time-consuming and subject to interobserver variability.
Objectives
To develop and validate a deep learning-based multiclass semantic segmentation algorithm for OCT (OCT-AID).
Methods
A reference standard was obtained through manual multiclass annotation (guidewire artefact, lumen, side branch, intima, media, lipid plaque, calcified plaque, thrombus, plaque rupture, and background) of OCT images from a representative subset of pullbacks from the PECTUS-obs study. Pullbacks were randomly divided into a training and internal test set. An additional independent dataset was used for external testing.
Results
In total, 2808 frames were used for training and 218 for internal testing. The external test set comprised 392 frames. On the internal test set, the mean Dice score across nine classes was 0.659 overall and 0.757 on the true-positive frames, ranging from 0.281 to 0.989 per class. Substantial to almost perfect agreement was achieved for frame-wise identification of both lipid (κ=0.817, 95% CI 0.743-0.891) and calcified plaques (κ=0.795, 95% CI 0.703-0.887). For plaque quantification (e.g. lipid arc, calcium thickness), intraclass correlations of 0.664-0.884 were achieved. In the external test set, κ-values for lipid and calcified plaques were 0.720 (95% CI 0.640-0.800) and 0.851 (95% CI 0.794-0.908), respectively.
Conclusions
The developed multiclass semantic segmentation method for intracoronary OCT images demonstrated promising capabilities for various classes, while having included difficult frames, such as those containing artefacts or destabilized plaques. This algorithm is an important step towards comprehensive and standardized OCT image interpretation.