Open Access
Open access
Nucleic Acids Research, volume 47, issue 12, pages 6360-6368

Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules

Publication typeJournal Article
Publication date2019-05-20
scimago Q1
SJR7.048
CiteScore27.1
Impact factor16.6
ISSN03051048, 13624962
PubMed ID:  31106378
Genetics
Abstract

DNA unwinding is an important cellular process involved in DNA replication, transcription and repair. In cells, molecular crowding caused by the presence of organelles, proteins, and other molecules affects numerous internal cellular structures. Here, we visualize plasmid DNA unwinding and binding dynamics to an oligonucleotide probe as functions of ionic strength, crowding agent concentration, and crowding agent species using single-molecule CLiC microscopy. We demonstrate increased probe–plasmid interaction over time with increasing concentration of 8 kDa polyethylene glycol (PEG), a crowding agent. We show decreased probe–plasmid interactions as ionic strength is increased without crowding. However, when crowding is introduced via 10% 8 kDa PEG, interactions between plasmids and oligos are enhanced. This is beyond what is expected for normal in vitro conditions, and may be a critically important, but as of yet unknown, factor in DNA’s proper biological function in vivo. Our results show that crowding has a strong effect on the initial concentration of unwound plasmids. In the dilute conditions used in these experiments, crowding does not impact probe–plasmid interactions once the site is unwound.

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?