Open Access
Open access
том 7 издание 3 номер публикации lqaf093

Metagenomics-Toolkit: the flexible and efficient cloud-based metagenomics workflow featuring machine learning-enabled resource allocation

Peter Belmann 1, 2
Benedikt Osterholz 1, 2
Nils Kleinbölting 1
Alfred Pühler 3
Andreas Schlüter 2
Alexander Sczyrba 1, 2
Тип публикацииJournal Article
Дата публикации2025-07-04
scimago Q1
wos Q2
БС2
SJR2.179
CiteScore6.5
Impact factor2.8
ISSN26319268
Краткое описание

The metagenome analysis of complex environments with thousands of datasets, such as those in the Sequence Read Archive, requires substantial computational resources for it to be completed within a reasonable time frame. Efficient use of infrastructure is essential, and analyses must be fully reproducible with publicly available workflows to ensure transparency. Here, we introduce the Metagenomics-Toolkit, a scalable, data-agnostic workflow that automates the analysis of short and long metagenomic reads from Illumina and Oxford Nanopore Technology devices, respectively. The Metagenomics-Toolkit provides standard features such as quality control, assembly, binning, and annotation, along with unique capabilities including plasmid identification, recovery of unassembled microbial community members, and discovery of microbial interdependencies through dereplication, co-occurrence, and genome-scale metabolic modeling. Additionally, the Metagenomics-Toolkit includes a machine learning-optimized assembly step that adjusts peak RAM usage to match actual requirements, reducing the need for high-memory hardware. It can be executed on user workstations and includes optimizations for efficient cloud-based cluster execution. We compare the Metagenomics-Toolkit with five widely used metagenomics workflows and demonstrate its capabilities on 757 sewage metagenome datasets to investigate a possible sewage core microbiome. The Metagenomics-Toolkit is open source and available at https://github.com/metagenomics/metagenomics-tk.

Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
Belmann P. et al. Metagenomics-Toolkit: the flexible and efficient cloud-based metagenomics workflow featuring machine learning-enabled resource allocation // NAR Genomics and Bioinformatics. 2025. Vol. 7. No. 3. lqaf093
ГОСТ со всеми авторами (до 50) Скопировать
Belmann P., Osterholz B., Kleinbölting N., Pühler A., Schlüter A., Sczyrba A. Metagenomics-Toolkit: the flexible and efficient cloud-based metagenomics workflow featuring machine learning-enabled resource allocation // NAR Genomics and Bioinformatics. 2025. Vol. 7. No. 3. lqaf093
RIS |
Цитировать
TY - JOUR
DO - 10.1093/nargab/lqaf093
UR - https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqaf093/8204052
TI - Metagenomics-Toolkit: the flexible and efficient cloud-based metagenomics workflow featuring machine learning-enabled resource allocation
T2 - NAR Genomics and Bioinformatics
AU - Belmann, Peter
AU - Osterholz, Benedikt
AU - Kleinbölting, Nils
AU - Pühler, Alfred
AU - Schlüter, Andreas
AU - Sczyrba, Alexander
PY - 2025
DA - 2025/07/04
PB - Oxford University Press
IS - 3
VL - 7
SN - 2631-9268
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Belmann,
author = {Peter Belmann and Benedikt Osterholz and Nils Kleinbölting and Alfred Pühler and Andreas Schlüter and Alexander Sczyrba},
title = {Metagenomics-Toolkit: the flexible and efficient cloud-based metagenomics workflow featuring machine learning-enabled resource allocation},
journal = {NAR Genomics and Bioinformatics},
year = {2025},
volume = {7},
publisher = {Oxford University Press},
month = {jul},
url = {https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqaf093/8204052},
number = {3},
pages = {lqaf093},
doi = {10.1093/nargab/lqaf093}
}