Open Access
Open access
National Science Review, volume 8, issue 1

Efficient network immunization under limited knowledge

Publication typeJournal Article
Publication date2020-09-03
scimago Q1
SJR2.934
CiteScore24.1
Impact factor16.3
ISSN20955138, 2053714X
PubMed ID:  34676088
Multidisciplinary
Abstract

Targeted immunization of centralized nodes in large-scale networks has attracted significant attention. However, in real-world scenarios, knowledge and observations of the network may be limited, thereby precluding a full assessment of the optimal nodes to immunize (or quarantine) in order to avoid epidemic spreading such as that of the current coronavirus disease (COVID-19) epidemic. Here, we study a novel immunization strategy where only n nodes are observed at a time and the most central among these n nodes is immunized. This process can globally immunize a network. We find that even for small n (≈10) there is significant improvement in the immunization (quarantine), which is very close to the levels of immunization with full knowledge. We develop an analytical framework for our method and determine the critical percolation threshold pc and the size of the giant component P∞ for networks with arbitrary degree distributions P(k). In the limit of n → ∞ we recover prior work on targeted immunization, whereas for n = 1 we recover the known case of random immunization. Between these two extremes, we observe that, as n increases, pc increases quickly towards its optimal value under targeted immunization with complete information. In particular, we find a new general scaling relationship between |pc(∞) − pc(n)| and n as |pc(∞) − pc(n)| ∼ n−1exp(−αn). For scale-free (SF) networks, where P(k) ∼ k−γ, 2 < γ < 3, we find that pc has a transition from zero to nonzero when n increases from n = 1 to O(log N) (where N is the size of the network). Thus, for SF networks, having knowledge of  ≈log N nodes and immunizing the most optimal among them can dramatically reduce epidemic spreading. We also demonstrate our limited knowledge immunization strategy on several real-world networks and confirm that in these real networks, pc increases significantly even for small n.

Found 
Found 

Top-30

Journals

1
2
3
4
5
6
7
1
2
3
4
5
6
7

Publishers

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?