том 20 издание 5 страницы 219-226

Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries

Тип публикацииJournal Article
Дата публикации2007-01-01
scimago Q1
wos Q2
БС3
SJR1.229
CiteScore5.7
Impact factor3.4
ISSN17410126, 17410134
Biochemistry
Molecular Biology
Biotechnology
Bioengineering
Краткое описание
The directed evolution of proteins has benefited greatly from site-specific methods of diversification such as saturation mutagenesis. These techniques target diversity to a number of chosen positions that are usually non-contiguous in the protein's primary structure. However, the number of targeted positions can be large, thus leading to impractically large library size, wherein almost all library variants are inactive and the likelihood of selecting desirable properties is extremely small. We describe a versatile combinatorial method for the partial diversification of large sets of residues. Our library oligonucleotides comprise randomized codons that are flanked by wild-type sequences. Adding these oligonucleotides to an assembly PCR of wild-type gene fragments incorporates the randomized cassettes, at their target sites, into the reassembled gene. Varying the oligonucleotides concentration resulted in library variants that carry a different average number of mutated positions that comprise a random subset of the entire set of diversified codons. This method, dubbed Incorporating Synthetic Oligos via Gene Reassembly (ISOR), was used to create libraries of a cytosine-C5 methyltransferase wherein 45 individual positions were randomized. One library, containing an average of 5.6 mutated residues per gene, was selected, and mutants with wild-type-like activities isolated. We also created libraries of serum paraoxonase PON1 harboring insertions and deletions (indels) in various areas surrounding the active site. Screening these libraries yielded a range of mutants with altered substrate specificities and indicated that certain regions of this enzyme have a surprisingly high tolerance to indels.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
PLoS ONE
6 публикаций, 6.32%
Journal of Molecular Biology
6 публикаций, 6.32%
Biochemistry
4 публикации, 4.21%
Nucleic Acids Research
4 публикации, 4.21%
Scientific Reports
3 публикации, 3.16%
Nature Chemical Biology
3 публикации, 3.16%
Current Opinion in Chemical Biology
3 публикации, 3.16%
ACS Chemical Biology
3 публикации, 3.16%
Methods in Molecular Biology
3 публикации, 3.16%
Protein Engineering, Design and Selection
3 публикации, 3.16%
Nature Communications
2 публикации, 2.11%
Applied Microbiology and Biotechnology
2 публикации, 2.11%
Chemistry & Biology
2 публикации, 2.11%
Angewandte Chemie
2 публикации, 2.11%
Angewandte Chemie - International Edition
2 публикации, 2.11%
ChemBioChem
2 публикации, 2.11%
ACS Synthetic Biology
2 публикации, 2.11%
Methods in Enzymology
2 публикации, 2.11%
Applied and Environmental Microbiology
2 публикации, 2.11%
Journal of Computational Biology
1 публикация, 1.05%
Indian Journal of Microbiology
1 публикация, 1.05%
Nature
1 публикация, 1.05%
Nature Protocols
1 публикация, 1.05%
BMC Biotechnology
1 публикация, 1.05%
Nature Reviews Genetics
1 публикация, 1.05%
Comptes Rendus Chimie
1 публикация, 1.05%
Bioresource Technology
1 публикация, 1.05%
Current Opinion in Structural Biology
1 публикация, 1.05%
Biocatalysis and Agricultural Biotechnology
1 публикация, 1.05%
1
2
3
4
5
6

Издатели

2
4
6
8
10
12
14
16
18
20
Springer Nature
19 публикаций, 20%
Elsevier
18 публикаций, 18.95%
Wiley
15 публикаций, 15.79%
American Chemical Society (ACS)
12 публикаций, 12.63%
Oxford University Press
7 публикаций, 7.37%
Public Library of Science (PLoS)
6 публикаций, 6.32%
Royal Society of Chemistry (RSC)
2 публикации, 2.11%
Taylor & Francis
2 публикации, 2.11%
American Society for Microbiology
2 публикации, 2.11%
Mary Ann Liebert
1 публикация, 1.05%
American Society for Biochemistry and Molecular Biology
1 публикация, 1.05%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.05%
2
4
6
8
10
12
14
16
18
20
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
95
Поделиться
Цитировать
ГОСТ |
Цитировать
Herman A., Tawfik D. S. Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries // Protein Engineering, Design and Selection. 2007. Vol. 20. No. 5. pp. 219-226.
ГОСТ со всеми авторами (до 50) Скопировать
Herman A., Tawfik D. S. Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries // Protein Engineering, Design and Selection. 2007. Vol. 20. No. 5. pp. 219-226.
RIS |
Цитировать
TY - JOUR
DO - 10.1093/protein/gzm014
UR - https://doi.org/10.1093/protein/gzm014
TI - Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries
T2 - Protein Engineering, Design and Selection
AU - Herman, Asael
AU - Tawfik, Dan S.
PY - 2007
DA - 2007/01/01
PB - Oxford University Press
SP - 219-226
IS - 5
VL - 20
PMID - 17483523
SN - 1741-0126
SN - 1741-0134
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2007_Herman,
author = {Asael Herman and Dan S. Tawfik},
title = {Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries},
journal = {Protein Engineering, Design and Selection},
year = {2007},
volume = {20},
publisher = {Oxford University Press},
month = {jan},
url = {https://doi.org/10.1093/protein/gzm014},
number = {5},
pages = {219--226},
doi = {10.1093/protein/gzm014}
}
MLA
Цитировать
Herman, Asael, and Dan S. Tawfik. “Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries.” Protein Engineering, Design and Selection, vol. 20, no. 5, Jan. 2007, pp. 219-226. https://doi.org/10.1093/protein/gzm014.