volume 191 issue 1

TCDD alters essential transcriptional regulators of osteogenic differentiation in multipotent mesenchymal stem cells

Publication typeJournal Article
Publication date2022-11-12
scimago Q1
wos Q1
SJR1.086
CiteScore7.1
Impact factor4.1
ISSN10966080, 10960929
Abstract

Differentiation of multipotent mesenchymal stem cells into bone-forming osteoblasts requires strict coordination of transcriptional pathways. Aryl hydrocarbon receptor (AhR) ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), have been shown to alter osteoblast differentiation in vitro and bone formation in multiple developmental in vivo models. The goal of the present study was to establish a global transcriptomic landscape during early, intermediate, and apical stages of osteogenic differentiation in vitro in response to TCDD exposure. Human bone-derived mesenchymal stem cells (hBMSC) were cultured in growth media (GM), osteogenic differentiation media (ODM), or osteogenic differentiation media containing 10 nM TCDD (ODM+TCDD), thus enabling a comparison of the transcriptomic profiles of undifferentiated, differentiated, and differentiated -TCDD-exposed hBMSCs, respectively. In this test system, exposure to TCDD attenuated differentiation of hBMSCs into osteoblasts as evidenced by reduced alkaline phosphatase activity and mineralization. At various timepoints, we observed altered expression of genes that play a role in the Wnt, FGF, BMP/TGF-β developmental pathways, as well as pathways related to extracellular matrix organization and deposition. Reconstruction of gene regulatory networks with the iDREM analysis revealed modulation of transcription factors (TF) including POLR3G, NR4A1, RDBP, GTF2B, POU2F2 and ZEB1, which may putatively influence osteoblast differentiation and the requisite deposition and mineralization of bone extracellular matrix. We demonstrate that the combination of RNA-Seq data in conjunction with the iDREM regulatory model, captures the transcriptional dynamics underlying mesenchymal stem cell differentiation under different conditions in vitro. Model predictions are consistent with existing knowledge and provides a new tool to identify novel pathways and transcription factors that may facilitate a better understanding of the osteoblast differentiation process, perturbation by exogenous agents, and potential intervention strategies targeting those specific pathways.

Found 
Found 

Top-30

Journals

1
Frontiers in Immunology
1 publication, 20%
Journal of Cellular and Molecular Medicine
1 publication, 20%
Ecotoxicology and Environmental Safety
1 publication, 20%
Biochemical Pharmacology
1 publication, 20%
Scientific Reports
1 publication, 20%
1

Publishers

1
2
Elsevier
2 publications, 40%
Frontiers Media S.A.
1 publication, 20%
Wiley
1 publication, 20%
Springer Nature
1 publication, 20%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
6
Share
Cite this
GOST |
Cite this
GOST Copy
Watson A. T. D. et al. TCDD alters essential transcriptional regulators of osteogenic differentiation in multipotent mesenchymal stem cells // Toxicological Sciences. 2022. Vol. 191. No. 1.
GOST all authors (up to 50) Copy
Watson A. T. D., Carmona Baez A., Jima D., Reif D. W., Ding J., Roberts R., Kullman S. W. TCDD alters essential transcriptional regulators of osteogenic differentiation in multipotent mesenchymal stem cells // Toxicological Sciences. 2022. Vol. 191. No. 1.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1093/toxsci/kfac120
UR - https://doi.org/10.1093/toxsci/kfac120
TI - TCDD alters essential transcriptional regulators of osteogenic differentiation in multipotent mesenchymal stem cells
T2 - Toxicological Sciences
AU - Watson, Atlee T D
AU - Carmona Baez, Aldo
AU - Jima, Dereje
AU - Reif, David W.
AU - Ding, Jun
AU - Roberts, Reade
AU - Kullman, Seth W.
PY - 2022
DA - 2022/11/12
PB - Oxford University Press
IS - 1
VL - 191
PMID - 36370075
SN - 1096-6080
SN - 1096-0929
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Watson,
author = {Atlee T D Watson and Aldo Carmona Baez and Dereje Jima and David W. Reif and Jun Ding and Reade Roberts and Seth W. Kullman},
title = {TCDD alters essential transcriptional regulators of osteogenic differentiation in multipotent mesenchymal stem cells},
journal = {Toxicological Sciences},
year = {2022},
volume = {191},
publisher = {Oxford University Press},
month = {nov},
url = {https://doi.org/10.1093/toxsci/kfac120},
number = {1},
doi = {10.1093/toxsci/kfac120}
}