том 192 издание 7

Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects

Тип публикацииJournal Article
Дата публикации2023-02-24
scimago Q1
wos Q1
БС1
SJR2.046
CiteScore8.7
Impact factor4.8
ISSN00029262, 14766256
Epidemiology
Краткое описание

“Heterogeneous treatment effects” is a term which refers to conditional average treatment effects (i.e., CATEs) that vary across population subgroups. Epidemiologists are often interested in estimating such effects because they can help detect populations who may particularly benefit from or be harmed by a treatment. However, standard regression approaches for estimating heterogeneous effects are limited by pre-existing hypotheses, test a single effect modifier at a time, and are subject to the multiple comparisons problem. The objective of this text is to offer a practical guide to honest causal forests, an ensemble tree-based learning method which can discover as well as estimate heterogeneous treatment effects using a data-driven approach. We discuss the fundamentals of tree-based methods, describe how honest causal forests can identify and estimate heterogeneous effects, and demonstrate an implementation of this method using simulated data. Our implementation highlights the steps required to simulate datasets, build honest causal forests, and assess model performance across a variety of simulation scenarios. Overall, this paper is intended for epidemiologists and other population health researchers who lack an extensive background in machine learning yet are interested in utilizing an emerging method for identifying and estimating heterogeneous treatment effects.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
BMC Medical Research Methodology
3 публикации, 7.89%
Statistics in Medicine
2 публикации, 5.26%
American Journal of Epidemiology
2 публикации, 5.26%
Resuscitation Plus
1 публикация, 2.63%
Journal of Thoracic and Cardiovascular Surgery
1 публикация, 2.63%
Alzheimer's and Dementia
1 публикация, 2.63%
Clinical Epidemiology
1 публикация, 2.63%
Frontiers in Psychiatry
1 публикация, 2.63%
American Journal of Respiratory and Critical Care Medicine
1 публикация, 2.63%
SSRN Electronic Journal
1 публикация, 2.63%
Environmental International
1 публикация, 2.63%
Tomography
1 публикация, 2.63%
Nature Human Behaviour
1 публикация, 2.63%
BMC Medicine
1 публикация, 2.63%
Diabetes, Obesity and Metabolism
1 публикация, 2.63%
International Journal of Methods in Psychiatric Research
1 публикация, 2.63%
Journals of Gerontology - Series A Biological Sciences and Medical Sciences
1 публикация, 2.63%
International Statistical Review
1 публикация, 2.63%
SSM - Population Health
1 публикация, 2.63%
Clinical Pharmacology and Therapeutics
1 публикация, 2.63%
Critical Care Medicine
1 публикация, 2.63%
Archives of Gerontology and Geriatrics
1 публикация, 2.63%
IEEE Access
1 публикация, 2.63%
JAMA network open
1 публикация, 2.63%
Scientific Reports
1 публикация, 2.63%
JHEP Reports
1 публикация, 2.63%
Health Services Research
1 публикация, 2.63%
Critical Care
1 публикация, 2.63%
Forests
1 публикация, 2.63%
1
2
3

Издатели

1
2
3
4
5
6
7
8
9
Springer Nature
9 публикаций, 23.68%
Wiley
8 публикаций, 21.05%
Elsevier
6 публикаций, 15.79%
Oxford University Press
3 публикации, 7.89%
MDPI
2 публикации, 5.26%
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 5.26%
Taylor & Francis
1 публикация, 2.63%
Frontiers Media S.A.
1 публикация, 2.63%
American Thoracic Society
1 публикация, 2.63%
Social Science Electronic Publishing
1 публикация, 2.63%
Cold Spring Harbor Laboratory
1 публикация, 2.63%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 2.63%
American Medical Association (AMA)
1 публикация, 2.63%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
38
Поделиться
Цитировать
ГОСТ |
Цитировать
Jawadekar N. et al. Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects // American Journal of Epidemiology. 2023. Vol. 192. No. 7.
ГОСТ со всеми авторами (до 50) Скопировать
Jawadekar N., Kezios K., Odden M. C., Stingone J. A., Calonico S., Rudolph K., Al Hazzouri A. Z. Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects // American Journal of Epidemiology. 2023. Vol. 192. No. 7.
RIS |
Цитировать
TY - JOUR
DO - 10.1093/aje/kwad043
UR - https://doi.org/10.1093/aje/kwad043
TI - Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects
T2 - American Journal of Epidemiology
AU - Jawadekar, Neal
AU - Kezios, Katrina
AU - Odden, Michelle C.
AU - Stingone, Jeanette A.
AU - Calonico, Sebastian
AU - Rudolph, Kara
AU - Al Hazzouri, Adina Zeki
PY - 2023
DA - 2023/02/24
PB - Oxford University Press
IS - 7
VL - 192
PMID - 36843042
SN - 0002-9262
SN - 1476-6256
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Jawadekar,
author = {Neal Jawadekar and Katrina Kezios and Michelle C. Odden and Jeanette A. Stingone and Sebastian Calonico and Kara Rudolph and Adina Zeki Al Hazzouri},
title = {Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects},
journal = {American Journal of Epidemiology},
year = {2023},
volume = {192},
publisher = {Oxford University Press},
month = {feb},
url = {https://doi.org/10.1093/aje/kwad043},
number = {7},
doi = {10.1093/aje/kwad043}
}