A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization

Marlena S Bannick 1
Jun Shao 2
Jingyi Liu 3
Yu Du 3
Yanyao Yi 3
Ting Ye 1
Тип публикацииJournal Article
Дата публикации2025-04-12
scimago Q1
wos Q1
БС1
SJR3.605
CiteScore5.8
Impact factor2.8
ISSN00063444, 14643510
Краткое описание
SUMMARY

In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that uses linear, generalized linear, and non-parametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, efficiency gain, and applicability of AIPW estimators. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability under different randomization schemes, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. Our methods are implemented in the R package RobinCar.

Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Bannick M. S. et al. A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization // Biometrika. 2025.
ГОСТ со всеми авторами (до 50) Скопировать
Bannick M. S., Shao J., Liu J., Du Yu., Yi Y., Ye T. A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization // Biometrika. 2025.
RIS |
Цитировать
TY - JOUR
DO - 10.1093/biomet/asaf029
UR - https://academic.oup.com/biomet/advance-article/doi/10.1093/biomet/asaf029/8112010
TI - A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization
T2 - Biometrika
AU - Bannick, Marlena S
AU - Shao, Jun
AU - Liu, Jingyi
AU - Du, Yu
AU - Yi, Yanyao
AU - Ye, Ting
PY - 2025
DA - 2025/04/12
PB - Oxford University Press
SN - 0006-3444
SN - 1464-3510
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Bannick,
author = {Marlena S Bannick and Jun Shao and Jingyi Liu and Yu Du and Yanyao Yi and Ting Ye},
title = {A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization},
journal = {Biometrika},
year = {2025},
publisher = {Oxford University Press},
month = {apr},
url = {https://academic.oup.com/biomet/advance-article/doi/10.1093/biomet/asaf029/8112010},
doi = {10.1093/biomet/asaf029}
}