Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations

Jason Dykes 1
Alfie Abdul-Rahman 2
DANIEL ARCHAMBAULT 3
Benjamin Bach 4
Rita Borgo 2
Min Chen 5
Jessica Enright 6
Hui Fang 7
Elif E. Firat 8
Euan Freeman 6
Tuna Gönen 5
Claire Harris 9
Radu Jianu 1
N. W. John 10
Saiful Khan 5
Andrew Lahiff 11
Robert S. Laramee 8
L. Matthews 6
Sibylle Mohr 6
Phong H. Nguyen 5
Alma A. M. Rahat 3
Panagiotis D. Ritsos 12
J.A. Roberts 12
Aidan Slingsby 1
Ben Swallow 6
Thomas Torsney-Weir 3
Cagatay Turkay 13
Robert Turner 14
Franck P. Vidal 12
Qiru Wang 8
Jo Nell Wood 1
Kai Xu 15
Publication typeJournal Article
Publication date2022-08-15
scimago Q1
wos Q1
SJR1.027
CiteScore9.6
Impact factor3.7
ISSN1364503X, 14712962
General Physics and Astronomy
General Mathematics
General Engineering
Abstract

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/ .

This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’.

Found 
Found 

Top-30

Journals

1
2
3
IEEE Computer Graphics and Applications
3 publications, 23.08%
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1 publication, 7.69%
SoftwareX
1 publication, 7.69%
Interacting with Computers
1 publication, 7.69%
Agronomy
1 publication, 7.69%
IEEE Transactions on Visualization and Computer Graphics
1 publication, 7.69%
Preventive Veterinary Medicine
1 publication, 7.69%
Computer Graphics Forum
1 publication, 7.69%
1
2
3

Publishers

1
2
3
4
5
6
Institute of Electrical and Electronics Engineers (IEEE)
6 publications, 46.15%
Elsevier
2 publications, 15.38%
The Royal Society
1 publication, 7.69%
Oxford University Press
1 publication, 7.69%
MDPI
1 publication, 7.69%
Wiley
1 publication, 7.69%
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
13
Share
Cite this
GOST |
Cite this
GOST Copy
Dykes J. et al. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2022. Vol. 380. No. 2233.
GOST all authors (up to 50) Copy
Dykes J., Abdul-Rahman A., ARCHAMBAULT D., Bach B., Borgo R., Chen M., Enright J., Fang H., Firat E. E., Freeman E., Gönen T., Harris C., Jianu R., John N. W., Khan S., Lahiff A., Laramee R. S., Matthews L., Mohr S., Nguyen P. H., Rahat A. A. M., Reeve R., Ritsos P. D., Roberts J., Slingsby A., Swallow B., Torsney-Weir T., Turkay C., Turner R., Vidal F. P., Wang Q., Wood J. N., Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2022. Vol. 380. No. 2233.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1098/rsta.2021.0299
UR - https://doi.org/10.1098/rsta.2021.0299
TI - Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
T2 - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
AU - Dykes, Jason
AU - Abdul-Rahman, Alfie
AU - ARCHAMBAULT, DANIEL
AU - Bach, Benjamin
AU - Borgo, Rita
AU - Chen, Min
AU - Enright, Jessica
AU - Fang, Hui
AU - Firat, Elif E.
AU - Freeman, Euan
AU - Gönen, Tuna
AU - Harris, Claire
AU - Jianu, Radu
AU - John, N. W.
AU - Khan, Saiful
AU - Lahiff, Andrew
AU - Laramee, Robert S.
AU - Matthews, L.
AU - Mohr, Sibylle
AU - Nguyen, Phong H.
AU - Rahat, Alma A. M.
AU - Reeve, Richard
AU - Ritsos, Panagiotis D.
AU - Roberts, J.A.
AU - Slingsby, Aidan
AU - Swallow, Ben
AU - Torsney-Weir, Thomas
AU - Turkay, Cagatay
AU - Turner, Robert
AU - Vidal, Franck P.
AU - Wang, Qiru
AU - Wood, Jo Nell
AU - Xu, Kai
PY - 2022
DA - 2022/08/15
PB - The Royal Society
IS - 2233
VL - 380
PMID - 35965467
SN - 1364-503X
SN - 1471-2962
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Dykes,
author = {Jason Dykes and Alfie Abdul-Rahman and DANIEL ARCHAMBAULT and Benjamin Bach and Rita Borgo and Min Chen and Jessica Enright and Hui Fang and Elif E. Firat and Euan Freeman and Tuna Gönen and Claire Harris and Radu Jianu and N. W. John and Saiful Khan and Andrew Lahiff and Robert S. Laramee and L. Matthews and Sibylle Mohr and Phong H. Nguyen and Alma A. M. Rahat and Richard Reeve and Panagiotis D. Ritsos and J.A. Roberts and Aidan Slingsby and Ben Swallow and Thomas Torsney-Weir and Cagatay Turkay and Robert Turner and Franck P. Vidal and Qiru Wang and Jo Nell Wood and Kai Xu},
title = {Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences},
year = {2022},
volume = {380},
publisher = {The Royal Society},
month = {aug},
url = {https://doi.org/10.1098/rsta.2021.0299},
number = {2233},
doi = {10.1098/rsta.2021.0299}
}
Profiles