Cold Spring Harbor molecular case studies, volume 6, issue 4, pages a005058

Reciprocal skeletal phenotypes of PRC2-related overgrowth and Rubinstein–Taybi syndromes: potential role of H3K27 modifications

DANIEL GAMU 1
William T Gibson 2
Publication typeJournal Article
Publication date2020-08-25
scimago Q2
SJR0.801
CiteScore3.2
Impact factor1.8
ISSN23732873, 23732865
General Medicine
Abstract

Within histone H3, lysine 27 (H3K27) is one of the residues that functions as a molecular switch, by virtue of being subject to mutually exclusive post-translational modifications that have reciprocal effects on gene expression. Whereas acetylation of H3K27 is associated with transcriptional activation, methylation at this residue causes transcriptional silencing; these two modifications are mutually exclusive. Establishment of these epigenetic marks is important in defining cellular identity and for maintaining normal cell function, as evidenced by rare genetic disorders of epigenetic writers involved in H3K27 post-translational modification. Polycomb repressive complex (PRC2)-related overgrowth and Rubinstein–Taybi syndrome (RSTS) are respectively associated with impaired H3K27 methylation and acetylation. Whereas these syndromes share commonalities like intellectual disability and susceptibility to cancers, they are generally divergent in their skeletal growth phenotypes, potentially through dysregulation of their opposing H3K27 writer functions. In this review, we discuss the requirement of H3K27 modifications for successful embryogenesis, highlighting data from relevant mouse knockout studies. Although such gene ablation studies are integral for defining fundamental biological roles of methyl- and acetyltransferase function in vivo, studies of partial loss-of-function models are likely to yield more meaningful translational insight into progression of PRC2-related overgrowth or RSTS. Thus, modeling of rare human PRC2-related overgrowth and RSTS variants in mice is needed to fully understand the causative role of aberrant H3K27 modification in the pathophysiology of these syndromes.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?