Cold Spring Harbor molecular case studies, volume 9, issue 4, pages mcs.a006294

Novel inherited CDX2 variant segregating in a family with diverse congenital malformations of the genitourinary system

Publication typeJournal Article
Publication date2023-10-10
scimago Q2
SJR0.801
CiteScore3.2
Impact factor1.8
ISSN23732873, 23732865
General Medicine
Abstract

Anorectal malformations (ARMs) constitute a group of congenital defects of the gastrointestinal and urogenital systems. They affect males and females, with an estimated worldwide prevalence of 1 in 5000 live births. These malformations are clinically heterogeneous and can be part of a syndromic presentation (syndromic ARM) or as a nonsyndromic entity (nonsyndromic ARM). Despite the well-recognized heritability of nonsyndromic ARM, the genetic etiology in most patients is unknown. In this study, we describe three siblings with diverse congenital anomalies of the genitourinary system, anemia, delayed milestones, and skeletal anomalies. Genome sequencing identified a novel, paternally inherited heterozygous Caudal type Homeobox 2 (CDX2) variant (c.722A > G (p.Glu241Gly)), that was present in all three affected siblings. The variant identified in this family is absent from population databases and predicted to be damaging by most in silico pathogenicity tools. So far, only two other reports implicate variants inCDX2with ARMs. Remarkably, the individuals described in these studies had similar clinical phenotypes and genetic alterations inCDX2.CDX2encodes a transcription factor and is considered the master regulator of gastrointestinal development. This variant maps to the homeobox domain of the encoded protein, which is critical for interaction with DNA targets. Our finding provides a potential molecular diagnosis for this family's condition and supports the role ofCDX2in anorectal anomalies. It also highlights the clinical heterogeneity and variable penetrance of ARM predisposition variants, another well-documented phenomenon. Finally, it underscores the diagnostic utility of genomic profiling of ARMs to identify the genetic etiology of these defects.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?