Physical Review B, volume 108, issue 5, publication number 054508

Surface superconductor-insulator transition induced by electric field

Publication typeJournal Article
Publication date2023-08-11
scimago Q1
wos Q2
SJR1.345
CiteScore6.3
Impact factor3.2
ISSN24699950, 24699969, 10980121, 1550235X
Abstract
It is well known that the electric field can induce phase transitions between superconducting, metallic and insulating states in thin-film materials due to its control of the charge carrier density. Since a similar effect on the charge carriers can also be expected for surfaces of bulk samples, here, we investigate the transformation of the surface states in a superconductor under an applied screened electric field. Our study is performed by numerically solving the self-consistent Bogoliubov--de Gennes equations for the one-dimensional attractive Hubbard model. It is found that the surface insulating regime occurs at sufficiently large (but still experimentally accessible) electric fields. Our calculations yield the phase diagram of the surface superconducting, metallic, and insulating states for a wide range of temperatures and applied fields. Our results are in qualitative agreement with the phase diagram obtained with the transport measurements for (Li, Fe)OHFeSe thin flakes [Ma et al., Sci. Bull. 64, 653 (2019); Yin et al., ACS Nano 14, 7513 (2020)].

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?