Open Access
Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide
Ganesh Sivaraman
1
,
Anand Narayanan Krishnamoorthy
3
,
M. Stan
4
,
G. Csányi
5
,
Álvaro Vázquez-Mayagoitia
6
,
3
Тип публикации: Journal Article
Дата публикации: 2021-04-14
scimago Q1
wos Q1
БС1
SJR: 2.856
CiteScore: 15.6
Impact factor: 9.0
ISSN: 00319007, 10797114
PubMed ID:
33929252
General Physics and Astronomy
Краткое описание
Understanding the structure and properties of refractory oxides are critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active-learner, which is initialized by X-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multi-phase potential is generated for a canonical example of the archetypal refractory oxide, HfO2, by drawing a minimum number of training configurations from room temperature to the liquid state at ~2900oC. The method significantly reduces model development time and human effort.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
Physical Review B
4 публикации, 9.52%
|
|
|
npj Computational Materials
3 публикации, 7.14%
|
|
|
Journal of Physical Chemistry Letters
3 публикации, 7.14%
|
|
|
Journal of Chemical Physics
3 публикации, 7.14%
|
|
|
Physical Review Materials
3 публикации, 7.14%
|
|
|
Journal of Chemical Theory and Computation
2 публикации, 4.76%
|
|
|
Journal of Physics Condensed Matter
2 публикации, 4.76%
|
|
|
Physical Review A
1 публикация, 2.38%
|
|
|
Journal of the Physical Society of Japan
1 публикация, 2.38%
|
|
|
Advanced Energy Materials
1 публикация, 2.38%
|
|
|
Advanced Theory and Simulations
1 публикация, 2.38%
|
|
|
Chemistry - Methods
1 публикация, 2.38%
|
|
|
Chemical Reviews
1 публикация, 2.38%
|
|
|
Journal of Synchrotron Radiation
1 публикация, 2.38%
|
|
|
Synchrotron Radiation News
1 публикация, 2.38%
|
|
|
Advances in Physics: X
1 публикация, 2.38%
|
|
|
Advanced Materials
1 публикация, 2.38%
|
|
|
International Journal of Precision Engineering and Manufacturing-Smart Technology
1 публикация, 2.38%
|
|
|
Digital Discovery
1 публикация, 2.38%
|
|
|
Science and Technology of Advanced Materials Methods
1 публикация, 2.38%
|
|
|
Physical Review Letters
1 публикация, 2.38%
|
|
|
Journal of Applied Physics
1 публикация, 2.38%
|
|
|
Physica Scripta
1 публикация, 2.38%
|
|
|
Nature Materials
1 публикация, 2.38%
|
|
|
Journal of Materials Informatics
1 публикация, 2.38%
|
|
|
Computational Materials Science
1 публикация, 2.38%
|
|
|
High Entropy Alloys & Materials
1 публикация, 2.38%
|
|
|
ACS Materials Letters
1 публикация, 2.38%
|
|
|
Optics and Laser Technology
1 публикация, 2.38%
|
|
|
1
2
3
4
|
Издатели
|
1
2
3
4
5
6
7
8
9
|
|
|
American Physical Society (APS)
9 публикаций, 21.43%
|
|
|
American Chemical Society (ACS)
7 публикаций, 16.67%
|
|
|
Springer Nature
5 публикаций, 11.9%
|
|
|
Wiley
5 публикаций, 11.9%
|
|
|
AIP Publishing
4 публикации, 9.52%
|
|
|
Taylor & Francis
3 публикации, 7.14%
|
|
|
IOP Publishing
3 публикации, 7.14%
|
|
|
Elsevier
2 публикации, 4.76%
|
|
|
Physical Society of Japan
1 публикация, 2.38%
|
|
|
International Journal of Precision Engineering and Manufacturing-Smart Technology of Korean Society for Precision Engineering
1 публикация, 2.38%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 2.38%
|
|
|
OAE Publishing Inc.
1 публикация, 2.38%
|
|
|
1
2
3
4
5
6
7
8
9
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
42
Всего цитирований:
42
Цитирований c 2024:
13
(30.95%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Sivaraman G. et al. Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide // Physical Review Letters. 2021. Vol. 126. No. 15. 156002
ГОСТ со всеми авторами (до 50)
Скопировать
Sivaraman G., Gallington L., Krishnamoorthy A. N., Stan M., Csányi G., Vázquez-Mayagoitia Á., Benmore C. J. Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide // Physical Review Letters. 2021. Vol. 126. No. 15. 156002
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1103/physrevlett.126.156002
UR - https://doi.org/10.1103/physrevlett.126.156002
TI - Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide
T2 - Physical Review Letters
AU - Sivaraman, Ganesh
AU - Gallington, Leighanne
AU - Krishnamoorthy, Anand Narayanan
AU - Stan, M.
AU - Csányi, G.
AU - Vázquez-Mayagoitia, Álvaro
AU - Benmore, Chris J.
PY - 2021
DA - 2021/04/14
PB - American Physical Society (APS)
IS - 15
VL - 126
PMID - 33929252
SN - 0031-9007
SN - 1079-7114
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Sivaraman,
author = {Ganesh Sivaraman and Leighanne Gallington and Anand Narayanan Krishnamoorthy and M. Stan and G. Csányi and Álvaro Vázquez-Mayagoitia and Chris J. Benmore},
title = {Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide},
journal = {Physical Review Letters},
year = {2021},
volume = {126},
publisher = {American Physical Society (APS)},
month = {apr},
url = {https://doi.org/10.1103/physrevlett.126.156002},
number = {15},
pages = {156002},
doi = {10.1103/physrevlett.126.156002}
}
Профили