Open Access
Open access
том 126 издание 15 номер публикации 156002

Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide

Ganesh Sivaraman 1
Anand Narayanan Krishnamoorthy 3
M. Stan 4
G. Csányi 5
Álvaro Vázquez-Mayagoitia 6
Тип публикацииJournal Article
Дата публикации2021-04-14
scimago Q1
wos Q1
БС1
SJR2.856
CiteScore15.6
Impact factor9.0
ISSN00319007, 10797114
General Physics and Astronomy
Краткое описание
Understanding the structure and properties of refractory oxides are critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active-learner, which is initialized by X-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multi-phase potential is generated for a canonical example of the archetypal refractory oxide, HfO2, by drawing a minimum number of training configurations from room temperature to the liquid state at ~2900oC. The method significantly reduces model development time and human effort.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
Physical Review B
4 публикации, 9.52%
npj Computational Materials
3 публикации, 7.14%
Journal of Physical Chemistry Letters
3 публикации, 7.14%
Journal of Chemical Physics
3 публикации, 7.14%
Physical Review Materials
3 публикации, 7.14%
Journal of Chemical Theory and Computation
2 публикации, 4.76%
Journal of Physics Condensed Matter
2 публикации, 4.76%
Physical Review A
1 публикация, 2.38%
Journal of the Physical Society of Japan
1 публикация, 2.38%
Advanced Energy Materials
1 публикация, 2.38%
Advanced Theory and Simulations
1 публикация, 2.38%
Chemistry - Methods
1 публикация, 2.38%
Chemical Reviews
1 публикация, 2.38%
Journal of Synchrotron Radiation
1 публикация, 2.38%
Synchrotron Radiation News
1 публикация, 2.38%
Advances in Physics: X
1 публикация, 2.38%
Advanced Materials
1 публикация, 2.38%
International Journal of Precision Engineering and Manufacturing-Smart Technology
1 публикация, 2.38%
Digital Discovery
1 публикация, 2.38%
Science and Technology of Advanced Materials Methods
1 публикация, 2.38%
Physical Review Letters
1 публикация, 2.38%
Journal of Applied Physics
1 публикация, 2.38%
Physica Scripta
1 публикация, 2.38%
Nature Materials
1 публикация, 2.38%
Journal of Materials Informatics
1 публикация, 2.38%
Computational Materials Science
1 публикация, 2.38%
High Entropy Alloys & Materials
1 публикация, 2.38%
ACS Materials Letters
1 публикация, 2.38%
Optics and Laser Technology
1 публикация, 2.38%
1
2
3
4

Издатели

1
2
3
4
5
6
7
8
9
American Physical Society (APS)
9 публикаций, 21.43%
American Chemical Society (ACS)
7 публикаций, 16.67%
Springer Nature
5 публикаций, 11.9%
Wiley
5 публикаций, 11.9%
AIP Publishing
4 публикации, 9.52%
Taylor & Francis
3 публикации, 7.14%
IOP Publishing
3 публикации, 7.14%
Elsevier
2 публикации, 4.76%
Physical Society of Japan
1 публикация, 2.38%
International Journal of Precision Engineering and Manufacturing-Smart Technology of Korean Society for Precision Engineering
1 публикация, 2.38%
Royal Society of Chemistry (RSC)
1 публикация, 2.38%
OAE Publishing Inc.
1 публикация, 2.38%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
42
Поделиться
Цитировать
ГОСТ |
Цитировать
Sivaraman G. et al. Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide // Physical Review Letters. 2021. Vol. 126. No. 15. 156002
ГОСТ со всеми авторами (до 50) Скопировать
Sivaraman G., Gallington L., Krishnamoorthy A. N., Stan M., Csányi G., Vázquez-Mayagoitia Á., Benmore C. J. Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide // Physical Review Letters. 2021. Vol. 126. No. 15. 156002
RIS |
Цитировать
TY - JOUR
DO - 10.1103/physrevlett.126.156002
UR - https://doi.org/10.1103/physrevlett.126.156002
TI - Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide
T2 - Physical Review Letters
AU - Sivaraman, Ganesh
AU - Gallington, Leighanne
AU - Krishnamoorthy, Anand Narayanan
AU - Stan, M.
AU - Csányi, G.
AU - Vázquez-Mayagoitia, Álvaro
AU - Benmore, Chris J.
PY - 2021
DA - 2021/04/14
PB - American Physical Society (APS)
IS - 15
VL - 126
PMID - 33929252
SN - 0031-9007
SN - 1079-7114
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Sivaraman,
author = {Ganesh Sivaraman and Leighanne Gallington and Anand Narayanan Krishnamoorthy and M. Stan and G. Csányi and Álvaro Vázquez-Mayagoitia and Chris J. Benmore},
title = {Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide},
journal = {Physical Review Letters},
year = {2021},
volume = {126},
publisher = {American Physical Society (APS)},
month = {apr},
url = {https://doi.org/10.1103/physrevlett.126.156002},
number = {15},
pages = {156002},
doi = {10.1103/physrevlett.126.156002}
}