Open Access
Open access
том 6 издание 1 номер публикации 010319

Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates

Тип публикацииJournal Article
Дата публикации2025-01-28
scimago Q1
wos Q1
БС1
SJR5.341
CiteScore20.0
Impact factor11.0
ISSN26913399
Краткое описание

The experimental realization of increasingly complex quantum states underscores the pressing need for new methods of state learning and verification. In one such framework, quantum state tomography, the aim is to learn the full quantum state from data obtained by measurements. Without prior assumptions on the state, this task is prohibitively hard. Here, we present an efficient algorithm for learning states on n fermion modes prepared by any number of Gaussian and at most t non-Gaussian gates. By Jordan-Wigner mapping, this also includes n-qubit states prepared by nearest-neighbor matchgate circuits with at most t gates. Our algorithm is based exclusively on single-copy measurements and produces a classical representation of a state, guaranteed to be close in trace distance to the target state. The sample and time complexity of our algorithm is poly(n,2t); thus if t=O(log(n)), it is efficient. We also show that, if t scales more than logarithmically, any learning algorithm to solve the same task must be inefficient, under common cryptographic assumptions. We also provide an efficient property-testing algorithm that, given access to copies of a state, determines whether such a state is far or close to the set of states for which our learning algorithm works. In addition to the outputs of quantum circuits, our tomography algorithm is efficient for some physical target states, such as those arising in time dynamics and low-energy physics of impurity models. Beyond tomography, our work sheds light on the structure of states prepared with few non-Gaussian gates and offers an improved upper bound on their circuit complexity, enabling an efficient circuit-compilation method.

Published by the American Physical Society 2025
Найдено 
Найдено 

Топ-30

Журналы

1
2
Quantum
2 публикации, 28.57%
Physics
1 публикация, 14.29%
Physical Review B
1 публикация, 14.29%
PRX Quantum
1 публикация, 14.29%
Physical Review Research
1 публикация, 14.29%
Nature Physics
1 публикация, 14.29%
1
2

Издатели

1
2
3
4
American Physical Society (APS)
4 публикации, 57.14%
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
2 публикации, 28.57%
Springer Nature
1 публикация, 14.29%
1
2
3
4
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
7
Поделиться
Цитировать
ГОСТ |
Цитировать
Mele A. A. et al. Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates // PRX Quantum. 2025. Vol. 6. No. 1. 010319
ГОСТ со всеми авторами (до 50) Скопировать
Mele A. A., Herasymenko Y. Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates // PRX Quantum. 2025. Vol. 6. No. 1. 010319
RIS |
Цитировать
TY - JOUR
DO - 10.1103/prxquantum.6.010319
UR - https://link.aps.org/doi/10.1103/PRXQuantum.6.010319
TI - Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates
T2 - PRX Quantum
AU - Mele, Antonio A
AU - Herasymenko, Yaroslav
PY - 2025
DA - 2025/01/28
PB - American Physical Society (APS)
IS - 1
VL - 6
SN - 2691-3399
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Mele,
author = {Antonio A Mele and Yaroslav Herasymenko},
title = {Efficient Learning of Quantum States Prepared With Few Fermionic Non-Gaussian Gates},
journal = {PRX Quantum},
year = {2025},
volume = {6},
publisher = {American Physical Society (APS)},
month = {jan},
url = {https://link.aps.org/doi/10.1103/PRXQuantum.6.010319},
number = {1},
pages = {010319},
doi = {10.1103/prxquantum.6.010319}
}