Open Access
Phenomenological model of superconducting optoelectronic loop neurons
Тип публикации: Journal Article
Дата публикации: 2023-03-09
scimago Q1
wos Q1
БС1
SJR: 1.593
CiteScore: 6.8
Impact factor: 4.2
ISSN: 26431564
General Physics and Astronomy
Краткое описание
Superconducting optoelectronic loop neurons are a class of circuits potentially conducive to networks for large-scale artificial cognition. These circuits employ superconducting components including single-photon detectors, Josephson junctions, and transformers to achieve neuromorphic functions. To date, all simulations of loop neurons have used first-principles circuit analysis to model the behavior of synapses, dendrites, and neurons. These circuit models are computationally inefficient and leave opaque the relationship between loop neurons and other complex systems. Here we introduce a modeling framework that captures the behavior of the relevant synaptic, dendritic, and neuronal circuits at a phenomenological level without resorting to full circuit equations. Within this compact model, each dendrite is discovered to obey a single nonlinear leaky-integrator ordinary differential equation, while a neuron is modeled as a dendrite with a thresholding element and an additional feedback mechanism for establishing a refractory period. A synapse is modeled as a single-photon detector coupled to a dendrite, where the response of the single-photon detector follows a closed-form expression. We quantify the accuracy of the phenomenological model relative to circuit simulations and find that the approach reduces computational time by a factor of ten thousand while maintaining an accuracy of one part in ten thousand. We demonstrate the use of the model with several basic examples. The net increase in computational efficiency enables future simulation of large networks, while the formulation provides a connection to a large body of work in applied mathematics, computational neuroscience, and physical systems such as spin glasses.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
APL Machine Learning
1 публикация, 16.67%
|
|
|
ACS Photonics
1 публикация, 16.67%
|
|
|
Mesoscience and Nanotechnology
1 публикация, 16.67%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 33.33%
|
|
|
AIP Publishing
1 публикация, 16.67%
|
|
|
American Chemical Society (ACS)
1 публикация, 16.67%
|
|
|
Treatise
1 публикация, 16.67%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
5
(83.33%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Shainline J. M. et al. Phenomenological model of superconducting optoelectronic loop neurons // Physical Review Research. 2023. Vol. 5. No. 1. 013164
ГОСТ со всеми авторами (до 50)
Скопировать
Shainline J. M., Primavera B. A., Khan S. Phenomenological model of superconducting optoelectronic loop neurons // Physical Review Research. 2023. Vol. 5. No. 1. 013164
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1103/physrevresearch.5.013164
UR - https://doi.org/10.1103/physrevresearch.5.013164
TI - Phenomenological model of superconducting optoelectronic loop neurons
T2 - Physical Review Research
AU - Shainline, Jeffrey M.
AU - Primavera, Bryce A
AU - Khan, Saeed
PY - 2023
DA - 2023/03/09
PB - American Physical Society (APS)
IS - 1
VL - 5
SN - 2643-1564
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Shainline,
author = {Jeffrey M. Shainline and Bryce A Primavera and Saeed Khan},
title = {Phenomenological model of superconducting optoelectronic loop neurons},
journal = {Physical Review Research},
year = {2023},
volume = {5},
publisher = {American Physical Society (APS)},
month = {mar},
url = {https://doi.org/10.1103/physrevresearch.5.013164},
number = {1},
pages = {013164},
doi = {10.1103/physrevresearch.5.013164}
}