Inductance calculation of high lift motor prototype for all-electric aircraft
The purpose of this paper is to present the performance requirements for the all-electric high lift motors and the inductance calculation process for the fractional slot concentrated winding.
This paper presents the research work related to all-electric aircraft high lift motors and the inductance calculation process of fractional slot concentrated winding. Firstly, this paper introduces the performance requirements for the high lift motor and summarizes the general process for calculating the inductance in fractional slot motors. Secondly, the analytical model of winding armature total inductance is obtained by the winding function method. Thirdly, a straightforward calculation method is employed for determining the total slot leakage inductance. Finally, the accuracy of the inductance calculation and controllability of the motor are confirmed through finite element model and motor control strategies.
In the fractional slot concentrated winding, the armature total inductance is equal to the armature self-inductance plus the armature mutual inductance. The slot leakage inductance is divided into the slot leakage self-inductance and the slot leakage mutual inductance. This allows inductance to be obtained quickly without finite element model.
This paper provides the inductance results of analytical and finite element simulation; the control strategy is employed to verify the conformity of the design requirements and control performance under the rated conditions. The implementation of double verification assures the practicality and effectiveness of the high lift motor.