Ranking and selection under input uncertainty: A budget allocation formulation

Тип публикацииProceedings Article
Дата публикации2017-12-01
Краткое описание
A widely acknowledged challenge in ranking and selection is how to allocate the simulation budget such that the probability of correction selection (PCS) is maximized. However, there is yet another challenge: when the input distributions are estimated using finite real-world data, simulation output is subject to input uncertainty and we may fail to identify the best system even using infinite simulation budget. We propose a new formulation that captures the tradeoff between collecting input data and running simulations. To solve the formulation, we develop an algorithm for two-stage allocation of finite budget. We use numerical experiment to demonstrate the performance of our algorithm.
Найдено 
Найдено 

Топ-30

Журналы

1
ACM Transactions on Modeling and Computer Simulation
1 публикация, 7.69%
Guide to Modeling and Simulation of Systems of Systems
1 публикация, 7.69%
SSRN Electronic Journal
1 публикация, 7.69%
European Journal of Operational Research
1 публикация, 7.69%
Naval Research Logistics
1 публикация, 7.69%
1

Издатели

1
2
3
4
5
6
7
Institute of Electrical and Electronics Engineers (IEEE)
7 публикаций, 53.85%
Elsevier
2 публикации, 15.38%
Association for Computing Machinery (ACM)
1 публикация, 7.69%
Springer Nature
1 публикация, 7.69%
Wiley
1 публикация, 7.69%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Поделиться