Open Access
Open access
том 8 страницы 6849-6860

Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal Evolution

Тип публикацииJournal Article
Дата публикации2020-01-07
scimago Q1
wos Q2
БС1
SJR0.849
CiteScore9.0
Impact factor3.6
ISSN21693536
General Materials Science
General Engineering
General Computer Science
Краткое описание
Recently, Knowledge Graph Embedding (KGE) has attracted considerable research efforts, since it simplifies the manipulation while preserving the inherent structure of the KG. However to some extent, most existing KGE approaches ignore the historical changes of structural information involved in dynamic knowledge graphs (DKGs). To deal with this problem, this paper presents a Timespan-aware Dynamic knowledge Graph Embedding Evolution (TDG2E) method that considers temporal evolving process of DKGs. The major innovations of our paper are two-fold. Firstly, a Gated Recurrent Units (GRU) based model is utilized in TDG2E to deal with the dependency among sub-KGs that is inevitably involved in the learning process of the dynamic knowledge graph embedding. Furthermore, we incorporate an auxiliary loss to supervise the learning process of the next sub-KG by utilizing previous structural information (i.e., the hidden state of GRU). In contrast with existing approaches in the literature (e.g., HyTE and t-TransE), TDG2E preserves structural information of current sub-KG and the temporal evolving process of the DKG simultaneously. Secondly, to further deal with the time unbalance issue underlying the DKGs, a Timespan Gate is designed in GRU. It makes TDG2E possible to model the temporal evolving process of DKGs more effectively by incorporating the timespan between adjacent sub-KGs. Extensive experiments on two large temporal datasets (i.e., YAGO11k and Wikidata12k) extracted from real-world KGs validate that the proposed TDG2E significantly outperforms traditional KGE methods in terms of Mean Rank and Hit Rate.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Communications in Computer and Information Science
2 публикации, 10%
Proceedings of the ACM on Human-Computer Interaction
1 публикация, 5%
Journal of Intelligent and Fuzzy Systems
1 публикация, 5%
Symmetry
1 публикация, 5%
Neurocomputing
1 публикация, 5%
Advanced Engineering Informatics
1 публикация, 5%
IEEE Access
1 публикация, 5%
Expert Systems with Applications
1 публикация, 5%
Knowledge-Based Systems
1 публикация, 5%
Procedia Computer Science
1 публикация, 5%
1
2

Издатели

2
4
6
8
10
Institute of Electrical and Electronics Engineers (IEEE)
10 публикаций, 50%
Elsevier
5 публикаций, 25%
Springer Nature
2 публикации, 10%
Association for Computing Machinery (ACM)
1 публикация, 5%
SAGE
1 публикация, 5%
MDPI
1 публикация, 5%
2
4
6
8
10
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Tang X. et al. Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal Evolution // IEEE Access. 2020. Vol. 8. pp. 6849-6860.
ГОСТ со всеми авторами (до 50) Скопировать
Tang X., Yuan R., Li Q., Wang T., Yang H., Cai Y., Song H. Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal Evolution // IEEE Access. 2020. Vol. 8. pp. 6849-6860.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/access.2020.2964028
UR - https://doi.org/10.1109/access.2020.2964028
TI - Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal Evolution
T2 - IEEE Access
AU - Tang, Xiaoli
AU - Yuan, Rui
AU - Li, Qianyu
AU - Wang, Tengyun
AU - Yang, Haizhi
AU - Cai, Yundong
AU - Song, Hengjie
PY - 2020
DA - 2020/01/07
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 6849-6860
VL - 8
SN - 2169-3536
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Tang,
author = {Xiaoli Tang and Rui Yuan and Qianyu Li and Tengyun Wang and Haizhi Yang and Yundong Cai and Hengjie Song},
title = {Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal Evolution},
journal = {IEEE Access},
year = {2020},
volume = {8},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://doi.org/10.1109/access.2020.2964028},
pages = {6849--6860},
doi = {10.1109/access.2020.2964028}
}