Open Access
Integration of Building Information Modeling and Machine Learning for Railway Defect Localization
Тип публикации: Journal Article
Дата публикации: 2021-12-13
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
General Engineering
General Computer Science
Краткое описание
Building Information Modeling (BIM) has been used in various industries for a long time. The railway system is another industry where BIM plays an important role. Since BIM can contain project information in different stages, a pool of information is involved and included in BIM. To use this information efficiently, machine learning, as a branch of artificial intelligence, is one of the tools widely applied nowadays. However, integrating BIM and machine learning in the railway system is new. This study is thus the world’s first to integrate BIM and machine learning to localize defects in the railway infrastructure. In this study, wheelburns are used as case studies. Machine learning techniques used to localize defects are Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). From the study, the developed BIM model can be fully integrated with machine learning to localize defects in the railway infrastructure using the developed workflow. It is found that the CNN model provides the best outcome when Mean Absolute Error (MAE) is used as the main indicator. The MAE of the CNN model is 0.03 m and the Max Error (ME) is 0.3 m. The results of the study show that the integration of BIM and machine learning can be achieved and provide advantages to the railway industry. The developed machine learning models provide satisfactory performance and will be beneficial for the railway industry for better asset management and cost-effective maintenance.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
Buildings
4 публикации, 14.29%
|
|
|
Journal of Facilities Management
1 публикация, 3.57%
|
|
|
Scientific Reports
1 публикация, 3.57%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 3.57%
|
|
|
Infrastructures
1 публикация, 3.57%
|
|
|
Information Resources Management Journal
1 публикация, 3.57%
|
|
|
Future Internet
1 публикация, 3.57%
|
|
|
IEEE Access
1 публикация, 3.57%
|
|
|
Computers in Industry
1 публикация, 3.57%
|
|
|
IOP Conference Series: Earth and Environmental Science
1 публикация, 3.57%
|
|
|
Discover Artificial Intelligence
1 публикация, 3.57%
|
|
|
Sustainability
1 публикация, 3.57%
|
|
|
International Journal of Transportation Science and Technology
1 публикация, 3.57%
|
|
|
International Journal of Rail Transportation
1 публикация, 3.57%
|
|
|
Journal of Construction Engineering and Management - ASCE
1 публикация, 3.57%
|
|
|
Discover Applied Sciences
1 публикация, 3.57%
|
|
|
Infrastructure Asset Management
1 публикация, 3.57%
|
|
|
Sensors
1 публикация, 3.57%
|
|
|
Transportation Geotechnics
1 публикация, 3.57%
|
|
|
Journal of the Urban Planning and Development Division, ASCE
1 публикация, 3.57%
|
|
|
Journal of Industrial Information Integration
1 публикация, 3.57%
|
|
|
Internet Technology Letters
1 публикация, 3.57%
|
|
|
Structure and Infrastructure Engineering
1 публикация, 3.57%
|
|
|
1
2
3
4
|
Издатели
|
1
2
3
4
5
6
7
8
9
|
|
|
MDPI
9 публикаций, 32.14%
|
|
|
Elsevier
5 публикаций, 17.86%
|
|
|
Springer Nature
3 публикации, 10.71%
|
|
|
Emerald
2 публикации, 7.14%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 7.14%
|
|
|
Taylor & Francis
2 публикации, 7.14%
|
|
|
American Society of Civil Engineers (ASCE)
2 публикации, 7.14%
|
|
|
IGI Global
1 публикация, 3.57%
|
|
|
IOP Publishing
1 публикация, 3.57%
|
|
|
Wiley
1 публикация, 3.57%
|
|
|
1
2
3
4
5
6
7
8
9
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
28
Всего цитирований:
28
Цитирований c 2024:
18
(64.28%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Sresakoolchai J. et al. Integration of Building Information Modeling and Machine Learning for Railway Defect Localization // IEEE Access. 2021. Vol. 9. pp. 166039-166047.
ГОСТ со всеми авторами (до 50)
Скопировать
Sresakoolchai J., Kaewunruen S. Integration of Building Information Modeling and Machine Learning for Railway Defect Localization // IEEE Access. 2021. Vol. 9. pp. 166039-166047.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2021.3135451
UR - https://doi.org/10.1109/access.2021.3135451
TI - Integration of Building Information Modeling and Machine Learning for Railway Defect Localization
T2 - IEEE Access
AU - Sresakoolchai, Jessada
AU - Kaewunruen, Sakdirat
PY - 2021
DA - 2021/12/13
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 166039-166047
VL - 9
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Sresakoolchai,
author = {Jessada Sresakoolchai and Sakdirat Kaewunruen},
title = {Integration of Building Information Modeling and Machine Learning for Railway Defect Localization},
journal = {IEEE Access},
year = {2021},
volume = {9},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {dec},
url = {https://doi.org/10.1109/access.2021.3135451},
pages = {166039--166047},
doi = {10.1109/access.2021.3135451}
}
Профили