Open Access
Adversarial Machine Learning in Text Processing: A Literature Survey
Тип публикации: Journal Article
Дата публикации: 2022-01-27
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
General Engineering
General Computer Science
Краткое описание
Machine learning algorithms represent the intelligence that controls many information systems and applications around us. As such, they are targeted by attackers to impact their decisions. Text created by machine learning algorithms has many types of applications, some of which can be considered malicious especially if there is an intention to present machine-generated text as human-generated. In this paper, we surveyed major subjects in adversarial machine learning for text processing applications. Unlike adversarial machine learning in images, text problems and applications are heterogeneous. Thus, each problem can have its own challenges. We focused on some of the evolving research areas such as: malicious versus genuine text generation metrics, defense against adversarial attacks, and text generation models and algorithms. Our study showed that as applications of text generation will continue to grow in the near future, the type and nature of attacks on those applications and their machine learning algorithms will continue to grow as well. Literature survey indicated an increasing trend in using pre-trained models in machine learning. Word/sentence embedding models and transformers are examples of those pre-trained models. Adversarial models may utilize same or similar pre-trained models as well. In another trend related to text generation models, literature showed effort to develop universal text perturbations to be used in both black-and white-box attack settings. Literature showed also using conditional GANs to create latent representation for writing types. This usage will allow for a seamless lexical and grammatical transition between various writing styles. In text generation metrics, research trends showed developing successful automated or semi-automated assessment metrics that may include human judgement. Literature showed also research trends of designing and developing new memory models that increase performance and memory utilization efficiency without validating real-time constraints. Many research efforts evaluate different defense model approaches and algorithms. Researchers evaluated different types of targeted attacks, and methods to distinguish human versus machine generated text.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
IEEE Access
4 публикации, 15.38%
|
|
|
Heliyon
1 публикация, 3.85%
|
|
|
Engineering Applications of Artificial Intelligence
1 публикация, 3.85%
|
|
|
Multimedia Tools and Applications
1 публикация, 3.85%
|
|
|
Neurocomputing
1 публикация, 3.85%
|
|
|
International Journal of Multimedia Information Retrieval
1 публикация, 3.85%
|
|
|
International Journal of Information Security
1 публикация, 3.85%
|
|
|
Scientific Reports
1 публикация, 3.85%
|
|
|
Industrial Management and Data Systems
1 публикация, 3.85%
|
|
|
IEEE Open Journal of the Communications Society
1 публикация, 3.85%
|
|
|
IEEE Transactions on Artificial Intelligence
1 публикация, 3.85%
|
|
|
Computers
1 публикация, 3.85%
|
|
|
Knowledge-Based Systems
1 публикация, 3.85%
|
|
|
Data & Policy
1 публикация, 3.85%
|
|
|
ACM Computing Surveys
1 публикация, 3.85%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
14 публикаций, 53.85%
|
|
|
Elsevier
4 публикации, 15.38%
|
|
|
Springer Nature
4 публикации, 15.38%
|
|
|
Emerald
1 публикация, 3.85%
|
|
|
MDPI
1 публикация, 3.85%
|
|
|
Cambridge University Press
1 публикация, 3.85%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 3.85%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
26
Всего цитирований:
26
Цитирований c 2024:
20
(76.93%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Alsmadi I. et al. Adversarial Machine Learning in Text Processing: A Literature Survey // IEEE Access. 2022. Vol. 10. pp. 17043-17077.
ГОСТ со всеми авторами (до 50)
Скопировать
Alsmadi I., Aljaafari N., Nazzal M. I., Alhamed S., Sawalmeh A., Vizcarra C. P., Khreishah A., Anan M., Algosaibi A., Al-Naeem M., Aldalbahi A., Alhumam A. Adversarial Machine Learning in Text Processing: A Literature Survey // IEEE Access. 2022. Vol. 10. pp. 17043-17077.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2022.3146405
UR - https://doi.org/10.1109/access.2022.3146405
TI - Adversarial Machine Learning in Text Processing: A Literature Survey
T2 - IEEE Access
AU - Alsmadi, Izzat
AU - Aljaafari, Nura
AU - Nazzal, Mahmoud I.
AU - Alhamed, Shadan
AU - Sawalmeh, Ahmad
AU - Vizcarra, Conrado P
AU - Khreishah, Abdallah
AU - Anan, Muhammad
AU - Algosaibi, Abdulelah
AU - Al-Naeem, Mohammed
AU - Aldalbahi, Adel
AU - Alhumam, Abdulaziz
PY - 2022
DA - 2022/01/27
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 17043-17077
VL - 10
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Alsmadi,
author = {Izzat Alsmadi and Nura Aljaafari and Mahmoud I. Nazzal and Shadan Alhamed and Ahmad Sawalmeh and Conrado P Vizcarra and Abdallah Khreishah and Muhammad Anan and Abdulelah Algosaibi and Mohammed Al-Naeem and Adel Aldalbahi and Abdulaziz Alhumam},
title = {Adversarial Machine Learning in Text Processing: A Literature Survey},
journal = {IEEE Access},
year = {2022},
volume = {10},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://doi.org/10.1109/access.2022.3146405},
pages = {17043--17077},
doi = {10.1109/access.2022.3146405}
}