Open Access
Deep Learning-Based Recommendation System: Systematic Review and Classification
Caiwen Li
1
,
Iskandar Ishak
1
,
Hamidah Ibrahim
1
,
Zolkepli Maslina
1
,
Maslina Binti Zolkepli
1
,
Fatimah Sidi
1
,
Caili Li
2
Тип публикации: Journal Article
Дата публикации: 2023-10-10
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
Electrical and Electronic Engineering
General Engineering
General Computer Science
Краткое описание
In recent years, recommendation systems have become essential for businesses to enhance customer satisfaction and generate revenue in various domains, such as e-commerce and entertainment. Deep learning techniques have significantly improved the accuracy and efficiency of these systems. However, there is a lack of literature on classification in systematic review papers that summarize the latest deep-learning techniques used in recommendation systems. Moreover, certain existing review papers have either overlooked state-of-the-art techniques or restricted their coverage to a narrow spectrum of domains. To address these research gaps, we present a systematic review paper that comprehensively analyzes the literature on deep learning techniques in recommendation systems, specifically using term classification.We analyzed relevant studies published between 2018 and February 2023, examining the techniques, datasets, domains, and measurement metrics used in these studies, utilizing a thorough SLR strategy. Our review reveals that deep learning techniques, such as graph neural networks, convolutional neural networks, and recurrent neural networks, have been widely used in recommendation systems. Furthermore, our study highlights the emerging area of research in domain classification, which has shown promising results in applying deep learning techniques to domains such as social networks, e-commerce, and e-learning. Our review paper offers insights into the deep learning techniques used across different recommendation systems and provides suggestions for future research. Our review fills a critical research gap and offers a valuable resource for researchers and practitioners interested in deep learning techniques for recommendation systems.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
IEEE Access
4 публикации, 11.11%
|
|
|
AEJ - Alexandria Engineering Journal
2 публикации, 5.56%
|
|
|
Lecture Notes in Networks and Systems
2 публикации, 5.56%
|
|
|
Decision Analytics Journal
1 публикация, 2.78%
|
|
|
Heliyon
1 публикация, 2.78%
|
|
|
Computing (Vienna/New York)
1 публикация, 2.78%
|
|
|
Journal of Supercomputing
1 публикация, 2.78%
|
|
|
Scientific Reports
1 публикация, 2.78%
|
|
|
Communications in Computer and Information Science
1 публикация, 2.78%
|
|
|
Journal of Organizational and End User Computing
1 публикация, 2.78%
|
|
|
Neurocomputing
1 публикация, 2.78%
|
|
|
Frontiers in Artificial Intelligence
1 публикация, 2.78%
|
|
|
Optics Letters
1 публикация, 2.78%
|
|
|
Intelligent Decision Technologies
1 публикация, 2.78%
|
|
|
Information Sciences
1 публикация, 2.78%
|
|
|
International Journal of Information Technology
1 публикация, 2.78%
|
|
|
Machine Learning with Applications
1 публикация, 2.78%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
14
16
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
16 публикаций, 44.44%
|
|
|
Elsevier
7 публикаций, 19.44%
|
|
|
Springer Nature
7 публикаций, 19.44%
|
|
|
IGI Global
2 публикации, 5.56%
|
|
|
IntechOpen
1 публикация, 2.78%
|
|
|
Frontiers Media S.A.
1 публикация, 2.78%
|
|
|
Optica Publishing Group
1 публикация, 2.78%
|
|
|
SAGE
1 публикация, 2.78%
|
|
|
2
4
6
8
10
12
14
16
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
36
Всего цитирований:
36
Цитирований c 2024:
35
(97.23%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Li C. et al. Deep Learning-Based Recommendation System: Systematic Review and Classification // IEEE Access. 2023. Vol. 11. pp. 113790-113835.
ГОСТ со всеми авторами (до 50)
Скопировать
Li C., Ishak I., Ibrahim H., Maslina Z., Zolkepli M. B., Sidi F., Li C. Deep Learning-Based Recommendation System: Systematic Review and Classification // IEEE Access. 2023. Vol. 11. pp. 113790-113835.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2023.3323353
UR - https://ieeexplore.ieee.org/document/10274963/
TI - Deep Learning-Based Recommendation System: Systematic Review and Classification
T2 - IEEE Access
AU - Li, Caiwen
AU - Ishak, Iskandar
AU - Ibrahim, Hamidah
AU - Maslina, Zolkepli
AU - Zolkepli, Maslina Binti
AU - Sidi, Fatimah
AU - Li, Caili
PY - 2023
DA - 2023/10/10
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 113790-113835
VL - 11
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Li,
author = {Caiwen Li and Iskandar Ishak and Hamidah Ibrahim and Zolkepli Maslina and Maslina Binti Zolkepli and Fatimah Sidi and Caili Li},
title = {Deep Learning-Based Recommendation System: Systematic Review and Classification},
journal = {IEEE Access},
year = {2023},
volume = {11},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {oct},
url = {https://ieeexplore.ieee.org/document/10274963/},
pages = {113790--113835},
doi = {10.1109/access.2023.3323353}
}