Open Access
A Review on Text Sentiment Analysis with Machine Learning and Deep Learning Techniques
1
Engineering Department, Pontificia Universidad Católica del Perú, 1801 Universitaria Av. San Miguel, Lima, Peru
|
2
Engineering Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
|
Тип публикации: Journal Article
Дата публикации: 2024-12-09
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
Краткое описание
Automating sentiment analysis in texts has become an important task in recent years due to the exponential growth of user-generated content, including comments and opinions on products and services. This represents a valuable opportunity for businesses to glean insights into customer sentiment and, in turn, to refine their offerings. Motivated by this, the machine learning field has witnessed a surge of innovation, with an introduction of models and tools being introduced to streamline sentiment analysis. This paper offers a thorough review of the recent advancements in machine learning and deep learning approaches for text sentiment analysis. We propose a novel framework for studying these models, distinguishing them by their structural intricacies. Additionally, we delve into the challenges, prospects, and emerging directions in research, as illuminated by our framework. Consequently, this paper equips researchers with a detailed panorama of the cutting-edge machine learning methodologies for dissecting text sentiment, easing the way for future explorations in this vibrant field.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Journal of King Saud University, Engineering Sciences
1 публикация, 25%
|
|
|
IEEE Access
1 публикация, 25%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 75%
|
|
|
Springer Nature
1 публикация, 25%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Всего цитирований:
4
Цитирований c 2024:
4
(100%)
Самый цитирующий журнал
Цитирований в журнале:
1
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Mamani-Coaquira Y. et al. A Review on Text Sentiment Analysis with Machine Learning and Deep Learning Techniques // IEEE Access. 2024. Vol. 12. pp. 193115-193130.
ГОСТ со всеми авторами (до 50)
Скопировать
Mamani-Coaquira Y., Villanueva E. A Review on Text Sentiment Analysis with Machine Learning and Deep Learning Techniques // IEEE Access. 2024. Vol. 12. pp. 193115-193130.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2024.3513321
UR - https://ieeexplore.ieee.org/document/10786014/
TI - A Review on Text Sentiment Analysis with Machine Learning and Deep Learning Techniques
T2 - IEEE Access
AU - Mamani-Coaquira, Yonatan
AU - Villanueva, Edwin
PY - 2024
DA - 2024/12/09
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 193115-193130
VL - 12
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Mamani-Coaquira,
author = {Yonatan Mamani-Coaquira and Edwin Villanueva},
title = {A Review on Text Sentiment Analysis with Machine Learning and Deep Learning Techniques},
journal = {IEEE Access},
year = {2024},
volume = {12},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {dec},
url = {https://ieeexplore.ieee.org/document/10786014/},
pages = {193115--193130},
doi = {10.1109/access.2024.3513321}
}