Open Access
BCSnet: A U-Net-based Model for Segmentation of Brain Cells in Trypan Blue Images
Aleksei A. Kudryavtsev
1
,
Aleksei Kudryavtsev
1
,
Ivan V. Simkin
2
,
Ivan Simkin
3
,
Maksim A. Dragun
2, 3
,
Olga P. Alexandrova
3
,
Ivan Pavlovich Malashin
1
,
Denis N. Sukhanov
1
,
Denis Sukhanov
1
,
Vladimir V. Nelyub
1
,
Vladimir A Nelyub
1
,
Vladimir Nelyub
1
,
Aleksei S. Borodulin
1
,
Aleksei Borodulin
1
,
Тип публикации: Journal Article
Дата публикации: 2024-12-18
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
Краткое описание
One of the methods for quantifying the survival of brain cells is the direct counting of stained neurons after they are fixed on the plate. This method requires a lot of time and effort associated with the need for manual cell counting and qualification in histology to detect visual differences between alive neuron cells and non-alive ones. The article deals with the problem of semantic segmentation of images of rat brain cells stained with trypan blue for automatic counting of alive brain cells. To solve the problem, a mathematical model has been developed in the form of a convolutional neural network based on the U-Net architecture. As a result of research, the best model has a metric of 0.9189 (Sorensen-Dies coefficient). The trained neural network makes it possible to evaluate the alive neurons three orders of magnitude faster than with manual calculation and with an accuracy that is not inferior to a histologist.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
IEEE Access
1 публикация, 50%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 100%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 2024:
2
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Kudryavtsev A. A. et al. BCSnet: A U-Net-based Model for Segmentation of Brain Cells in Trypan Blue Images // IEEE Access. 2024. Vol. 12. pp. 192915-192930.
ГОСТ со всеми авторами (до 50)
Скопировать
Kudryavtsev A. A., Kudryavtsev A., Simkin I. V., Simkin I., Dragun M. A., Alexandrova O. P., Malashin I. P., Sukhanov D. N., Sukhanov D., Nelyub V. V., Nelyub V. A., Nelyub V., Borodulin A. S., Borodulin A., Yurchenko S. O., Tynchenko V. BCSnet: A U-Net-based Model for Segmentation of Brain Cells in Trypan Blue Images // IEEE Access. 2024. Vol. 12. pp. 192915-192930.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2024.3519893
UR - https://ieeexplore.ieee.org/document/10806716/
TI - BCSnet: A U-Net-based Model for Segmentation of Brain Cells in Trypan Blue Images
T2 - IEEE Access
AU - Kudryavtsev, Aleksei A.
AU - Kudryavtsev, Aleksei
AU - Simkin, Ivan V.
AU - Simkin, Ivan
AU - Dragun, Maksim A.
AU - Alexandrova, Olga P.
AU - Malashin, Ivan Pavlovich
AU - Sukhanov, Denis N.
AU - Sukhanov, Denis
AU - Nelyub, Vladimir V.
AU - Nelyub, Vladimir A
AU - Nelyub, Vladimir
AU - Borodulin, Aleksei S.
AU - Borodulin, Aleksei
AU - Yurchenko, Stanislav O.
AU - Tynchenko, Vadim
PY - 2024
DA - 2024/12/18
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 192915-192930
VL - 12
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Kudryavtsev,
author = {Aleksei A. Kudryavtsev and Aleksei Kudryavtsev and Ivan V. Simkin and Ivan Simkin and Maksim A. Dragun and Olga P. Alexandrova and Ivan Pavlovich Malashin and Denis N. Sukhanov and Denis Sukhanov and Vladimir V. Nelyub and Vladimir A Nelyub and Vladimir Nelyub and Aleksei S. Borodulin and Aleksei Borodulin and Stanislav O. Yurchenko and Vadim Tynchenko},
title = {BCSnet: A U-Net-based Model for Segmentation of Brain Cells in Trypan Blue Images},
journal = {IEEE Access},
year = {2024},
volume = {12},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {dec},
url = {https://ieeexplore.ieee.org/document/10806716/},
pages = {192915--192930},
doi = {10.1109/access.2024.3519893}
}