Open Access
EFFResNet-ViT: A Fusion-based Convolutional and Vision Transformer Model for Explainable Medical Image Classification
Tahir Hussain
1
,
Hayaru Shouno
1
,
Abid Hussain
2, 3
,
D. Hussain
4
,
Muhammad Ismail
4
,
Tatheer Hussain Mir
5
,
Fang Rong Hsu
6
,
Taukir Alam
6
,
Shabnur Anonna Akhy
7
,
Shabnur Anonna Akhy
1
2
5
Intelligent System Laboratory, Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
|
6
Тип публикации: Journal Article
Дата публикации: 2025-03-27
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
Краткое описание
The rapid advancement of medical imaging technologies requires the development of advanced, automated, and interpretable diagnostic tools for clinical decision-making. Although convolutional neural networks (CNNs) have shown significant promise in medical image analysis, they have limitations in capturing the global context and lack interpretability, thereby hindering their clinical adoption. This study presents EFFResNet-ViT, a novel hybrid deep learning (DL) model designed to address these challenges by combining EfficientNet-B0 and ResNet-50 CNN backbones with a vision transformer (ViT) module. The proposed architecture employs a feature fusion strategy to integrate the local feature extraction strengths of CNNs with the global dependency modeling capabilities of transformers. The extracted features are further refined through a post-transformer CNN and a global average pooling layer to enhance the classification performance. To improve interpretability, EFFResNet-ViT incorporates Grad-CAM visualization techniques to highlight regions contributing to classification decisions and employs t-distributed stochastic neighbor embedding for feature space analysis, providing insights into class separability. The proposed model was evaluated on two benchmark datasets: brain tumor (BT) CE-MRI for BT classification and a retinal image dataset for ophthalmological diagnosis. EFFResNet-ViT achieved state-of-the-art performance, with accuracies of 99.31% and 92.54% on the BT CE-MRI and retinal datasets, respectively. Comparative analyses demonstrate the superior classification performance and interpretability of EFFResNet-ViT over existing ViT and CNN-based hybrid models. The explainable design of EFFResNet-ViT addresses the critical need for transparency in artificial intelligence-driven medical diagnostics, facilitating its potential integration into clinical workflows to improve decision-making and patient outcomes.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
47
Всего цитирований:
47
Цитирований c 0:
0
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hussain T. et al. EFFResNet-ViT: A Fusion-based Convolutional and Vision Transformer Model for Explainable Medical Image Classification // IEEE Access. 2025. Vol. 13. pp. 54040-54068.
ГОСТ со всеми авторами (до 50)
Скопировать
Hussain T., Shouno H., Hussain A., Hussain D., Ismail M., Mir T. H., Hsu F. R., Alam T., Akhy S. A., Anonna Akhy S. EFFResNet-ViT: A Fusion-based Convolutional and Vision Transformer Model for Explainable Medical Image Classification // IEEE Access. 2025. Vol. 13. pp. 54040-54068.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2025.3554184
UR - https://ieeexplore.ieee.org/document/10938132/
TI - EFFResNet-ViT: A Fusion-based Convolutional and Vision Transformer Model for Explainable Medical Image Classification
T2 - IEEE Access
AU - Hussain, Tahir
AU - Shouno, Hayaru
AU - Hussain, Abid
AU - Hussain, D.
AU - Ismail, Muhammad
AU - Mir, Tatheer Hussain
AU - Hsu, Fang Rong
AU - Alam, Taukir
AU - Akhy, Shabnur Anonna
AU - Anonna Akhy, Shabnur
PY - 2025
DA - 2025/03/27
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 54040-54068
VL - 13
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Hussain,
author = {Tahir Hussain and Hayaru Shouno and Abid Hussain and D. Hussain and Muhammad Ismail and Tatheer Hussain Mir and Fang Rong Hsu and Taukir Alam and Shabnur Anonna Akhy and Shabnur Anonna Akhy},
title = {EFFResNet-ViT: A Fusion-based Convolutional and Vision Transformer Model for Explainable Medical Image Classification},
journal = {IEEE Access},
year = {2025},
volume = {13},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {mar},
url = {https://ieeexplore.ieee.org/document/10938132/},
pages = {54040--54068},
doi = {10.1109/access.2025.3554184}
}