Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection
Тип публикации: Journal Article
Дата публикации: 2021-03-01
scimago Q1
wos Q1
БС1
SJR: 1.649
CiteScore: 13.5
Impact factor: 6.8
ISSN: 21682194, 21682208
PubMed ID:
32750939
Computer Science Applications
Biotechnology
Electrical and Electronic Engineering
Health Information Management
Краткое описание
In the past decade, anatomical context features have been widely used for cephalometric landmark detection and significant progress is still being made. However, most existing methods rely on handcrafted graphical models rather than incorporating anatomical context during training, leading to suboptimal performance. In this study, we present a novel framework that allows a Convolutional Neural Network (CNN) to learn richer anatomical context features during training. Our key idea consists of the Local Feature Perturbator (LFP) and the Anatomical Context loss (AC loss). When training the CNN, the LFP perturbs a cephalometric image based on prior anatomical distribution, forcing the CNN to gaze relevant features more globally. Then AC loss helps the CNN to learn the anatomical context based on spatial relationships between the landmarks. The experimental results demonstrate that the proposed framework makes the CNN learn richer anatomical representation, leading to increased performance. In the performance comparisons, the proposed scheme outperforms state-of-the-art methods on the ISBI 2015 Cephalometric X-ray Image Analysis Challenge.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Applied Sciences (Switzerland)
5 публикаций, 6.33%
|
|
|
Lecture Notes in Computer Science
5 публикаций, 6.33%
|
|
|
BMC Oral Health
4 публикации, 5.06%
|
|
|
IEEE Journal of Biomedical and Health Informatics
4 публикации, 5.06%
|
|
|
Bioengineering
3 публикации, 3.8%
|
|
|
American Journal of Orthodontics and Dentofacial Orthopedics
3 публикации, 3.8%
|
|
|
Neurocomputing
3 публикации, 3.8%
|
|
|
IEEE Access
3 публикации, 3.8%
|
|
|
Journal of Digital Imaging
2 публикации, 2.53%
|
|
|
Healthcare
2 публикации, 2.53%
|
|
|
Physics in Medicine and Biology
2 публикации, 2.53%
|
|
|
European Journal of Orthodontics
2 публикации, 2.53%
|
|
|
Scientific Reports
2 публикации, 2.53%
|
|
|
Computers in Biology and Medicine
2 публикации, 2.53%
|
|
|
Dentomaxillofacial Radiology
1 публикация, 1.27%
|
|
|
Journal of Clinical Medicine
1 публикация, 1.27%
|
|
|
Journal of Personalized Medicine
1 публикация, 1.27%
|
|
|
Clinical Oral Investigations
1 публикация, 1.27%
|
|
|
Knowledge-Based Systems
1 публикация, 1.27%
|
|
|
Saudi Dental Journal
1 публикация, 1.27%
|
|
|
Heliyon
1 публикация, 1.27%
|
|
|
Journal of Craniofacial Surgery
1 публикация, 1.27%
|
|
|
Journal of Orofacial Orthopedics
1 публикация, 1.27%
|
|
|
Electronics (Switzerland)
1 публикация, 1.27%
|
|
|
Biomedical Signal Processing and Control
1 публикация, 1.27%
|
|
|
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
1 публикация, 1.27%
|
|
|
The Journal of Indian Orthodontic Society
1 публикация, 1.27%
|
|
|
Computerized Medical Imaging and Graphics
1 публикация, 1.27%
|
|
|
IEEE Transactions on Instrumentation and Measurement
1 публикация, 1.27%
|
|
|
1
2
3
4
5
|
Издатели
|
5
10
15
20
|
|
|
Springer Nature
20 публикаций, 25.32%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
18 публикаций, 22.78%
|
|
|
Elsevier
15 публикаций, 18.99%
|
|
|
MDPI
13 публикаций, 16.46%
|
|
|
IOP Publishing
2 публикации, 2.53%
|
|
|
Oxford University Press
2 публикации, 2.53%
|
|
|
British Institute of Radiology
1 публикация, 1.27%
|
|
|
King Saud University
1 публикация, 1.27%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
1 публикация, 1.27%
|
|
|
SAGE
1 публикация, 1.27%
|
|
|
Public Library of Science (PLoS)
1 публикация, 1.27%
|
|
|
Research Square Platform LLC
1 публикация, 1.27%
|
|
|
Bentham Science Publishers Ltd.
1 публикация, 1.27%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 1.27%
|
|
|
5
10
15
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
79
Всего цитирований:
79
Цитирований c 2024:
36
(45.57%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Oh K. et al. Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection // IEEE Journal of Biomedical and Health Informatics. 2021. Vol. 25. No. 3. pp. 806-817.
ГОСТ со всеми авторами (до 50)
Скопировать
Oh K., OH I., Le V. N. T., Lee D. Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection // IEEE Journal of Biomedical and Health Informatics. 2021. Vol. 25. No. 3. pp. 806-817.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jbhi.2020.3002582
UR - https://doi.org/10.1109/jbhi.2020.3002582
TI - Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection
T2 - IEEE Journal of Biomedical and Health Informatics
AU - Oh, Kanghan
AU - OH, IL-SEOK
AU - Le, Van Nhat Thang
AU - Lee, Dae-Woo
PY - 2021
DA - 2021/03/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 806-817
IS - 3
VL - 25
PMID - 32750939
SN - 2168-2194
SN - 2168-2208
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Oh,
author = {Kanghan Oh and IL-SEOK OH and Van Nhat Thang Le and Dae-Woo Lee},
title = {Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection},
journal = {IEEE Journal of Biomedical and Health Informatics},
year = {2021},
volume = {25},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {mar},
url = {https://doi.org/10.1109/jbhi.2020.3002582},
number = {3},
pages = {806--817},
doi = {10.1109/jbhi.2020.3002582}
}
Цитировать
MLA
Скопировать
Oh, Kanghan, et al. “Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection.” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 3, Mar. 2021, pp. 806-817. https://doi.org/10.1109/jbhi.2020.3002582.