том 7 издание 7 страницы 6429-6438

Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things

XIAOKANG ZHOU 1, 2
Wei Liang 3, 4
Kevin I-Kai Wang 5
Hao Wang 6
Laurence T. Yang 7
QUN JIN 8
Тип публикацииJournal Article
Дата публикации2020-07-01
scimago Q1
wos Q1
БС1
SJR2.483
CiteScore16.3
Impact factor8.9
ISSN23274662, 23722541
Computer Science Applications
Hardware and Architecture
Information Systems
Computer Networks and Communications
Signal Processing
Краткое описание
Along with the advancement of several emerging computing paradigms and technologies, such as cloud computing, mobile computing, artificial intelligence, and big data, Internet of Things (IoT) technologies have been applied in a variety of fields. In particular, the Internet of Healthcare Things (IoHT) is becoming increasingly important in human activity recognition (HAR) due to the rapid development of wearable and mobile devices. In this article, we focus on the deep-learning-enhanced HAR in IoHT environments. A semisupervised deep learning framework is designed and built for more accurate HAR, which efficiently uses and analyzes the weakly labeled sensor data to train the classifier learning model. To better solve the problem of the inadequately labeled sample, an intelligent autolabeling scheme based on deep Q-network (DQN) is developed with a newly designed distance-based reward rule which can improve the learning efficiency in IoT environments. A multisensor based data fusion mechanism is then developed to seamlessly integrate the on-body sensor data, context sensor data, and personal profile data together, and a long short-term memory (LSTM)-based classification method is proposed to identify fine-grained patterns according to the high-level features contextually extracted from the sequential motion data. Finally, experiments and evaluations are conducted to demonstrate the usefulness and effectiveness of the proposed method using real-world data.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
35
40
45
50
IEEE Internet of Things Journal
46 публикаций, 10.9%
IEEE Access
26 публикаций, 6.16%
IEEE Sensors Journal
20 публикаций, 4.74%
Sensors
16 публикаций, 3.79%
Electronics (Switzerland)
14 публикаций, 3.32%
Multimedia Tools and Applications
11 публикаций, 2.61%
IEEE/ACM Transactions on Computational Biology and Bioinformatics
10 публикаций, 2.37%
Lecture Notes in Networks and Systems
6 публикаций, 1.42%
Neural Computing and Applications
5 публикаций, 1.18%
Communications in Computer and Information Science
5 публикаций, 1.18%
Applied Sciences (Switzerland)
4 публикации, 0.95%
IEEE Transactions on Intelligent Transportation Systems
4 публикации, 0.95%
Security and Communication Networks
4 публикации, 0.95%
Lecture Notes in Computer Science
4 публикации, 0.95%
IEEE Transactions on Consumer Electronics
4 публикации, 0.95%
Artificial Intelligence Review
3 публикации, 0.71%
Knowledge-Based Systems
3 публикации, 0.71%
Information Fusion
3 публикации, 0.71%
Expert Systems with Applications
3 публикации, 0.71%
Internet of Things
3 публикации, 0.71%
IEEE Transactions on Instrumentation and Measurement
3 публикации, 0.71%
IEEE Transactions on Computational Social Systems
3 публикации, 0.71%
Complexity
3 публикации, 0.71%
AIP Conference Proceedings
3 публикации, 0.71%
Symmetry
2 публикации, 0.47%
Biosensors
2 публикации, 0.47%
Complex & Intelligent Systems
2 публикации, 0.47%
Journal of Ambient Intelligence and Humanized Computing
2 публикации, 0.47%
Multimedia Systems
2 публикации, 0.47%
5
10
15
20
25
30
35
40
45
50

Издатели

20
40
60
80
100
120
140
160
180
200
Institute of Electrical and Electronics Engineers (IEEE)
182 публикации, 43.13%
Springer Nature
83 публикации, 19.67%
MDPI
52 публикации, 12.32%
Elsevier
45 публикаций, 10.66%
Hindawi Limited
13 публикаций, 3.08%
Association for Computing Machinery (ACM)
11 публикаций, 2.61%
Taylor & Francis
7 публикаций, 1.66%
IGI Global
3 публикации, 0.71%
World Scientific
3 публикации, 0.71%
AIP Publishing
3 публикации, 0.71%
SAGE
2 публикации, 0.47%
Frontiers Media S.A.
2 публикации, 0.47%
Tech Science Press
2 публикации, 0.47%
PeerJ
2 публикации, 0.47%
Wiley
2 публикации, 0.47%
Emerald
1 публикация, 0.24%
IOS Press
1 публикация, 0.24%
American Institute of Mathematical Sciences (AIMS)
1 публикация, 0.24%
Royal Society of Chemistry (RSC)
1 публикация, 0.24%
Walter de Gruyter
1 публикация, 0.24%
JMIR Publications
1 публикация, 0.24%
SPIIRAS
1 публикация, 0.24%
Optica Publishing Group
1 публикация, 0.24%
20
40
60
80
100
120
140
160
180
200
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
422
Поделиться
Цитировать
ГОСТ |
Цитировать
ZHOU X. et al. Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things // IEEE Internet of Things Journal. 2020. Vol. 7. No. 7. pp. 6429-6438.
ГОСТ со всеми авторами (до 50) Скопировать
ZHOU X., Liang W., Wang K. I., Wang H., Yang L. T., JIN Q. Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things // IEEE Internet of Things Journal. 2020. Vol. 7. No. 7. pp. 6429-6438.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/jiot.2020.2985082
UR - https://doi.org/10.1109/jiot.2020.2985082
TI - Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things
T2 - IEEE Internet of Things Journal
AU - ZHOU, XIAOKANG
AU - Liang, Wei
AU - Wang, Kevin I-Kai
AU - Wang, Hao
AU - Yang, Laurence T.
AU - JIN, QUN
PY - 2020
DA - 2020/07/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 6429-6438
IS - 7
VL - 7
SN - 2327-4662
SN - 2372-2541
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_ZHOU,
author = {XIAOKANG ZHOU and Wei Liang and Kevin I-Kai Wang and Hao Wang and Laurence T. Yang and QUN JIN},
title = {Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things},
journal = {IEEE Internet of Things Journal},
year = {2020},
volume = {7},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jul},
url = {https://doi.org/10.1109/jiot.2020.2985082},
number = {7},
pages = {6429--6438},
doi = {10.1109/jiot.2020.2985082}
}
MLA
Цитировать
ZHOU, XIAOKANG, et al. “Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things.” IEEE Internet of Things Journal, vol. 7, no. 7, Jul. 2020, pp. 6429-6438. https://doi.org/10.1109/jiot.2020.2985082.