том 8 издание 21 страницы 15906-15918

Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic

Тип публикацииJournal Article
Дата публикации2021-11-01
scimago Q1
wos Q1
БС1
SJR2.483
CiteScore16.3
Impact factor8.9
ISSN23274662, 23722541
Computer Science Applications
Hardware and Architecture
Information Systems
Computer Networks and Communications
Signal Processing
Краткое описание
The rapid geographic spread of COVID-19, to which various factors may have contributed, has caused a global health crisis. Recently, the analysis and forecast of the COVID-19 pandemic have attracted worldwide attention. In this work, a large COVID-19 data set consisting of COVID-19 pandemic, COVID-19 testing capacity, economic level, demographic information, and geographic location data in 184 countries and 1241 areas from December 18, 2019, to September 30, 2020, were developed from public reports released by national health authorities and bureau of statistics. We proposed a machine learning model for COVID-19 prediction based on the broad learning system (BLS). Here, we leveraged random forest (RF) to screen out the key features. Then, we combine the bagging strategy and BLS to develop a random-forest-bagging BLS (RF-Bagging-BLS) approach to forecast the trend of the COVID-19 pandemic. In addition, we compared the forecasting results with linear regression (LR) model, $K$ -nearest neighbors (KNN), decision tree (DT), adaptive boosting (Ada), RF, gradient boosting DT (GBDT), support vector regression (SVR), extra trees (ETs) regressor, CatBoost (CAT), LightGBM (LGB), XGBoost (XGB), and BLS.The RF-Bagging BLS model showed better forecasting performance in terms of relative mean-square error (RMSE), coefficient of determination ( $R^{2}$ ), adjusted coefficient of determination ( $R_{\mathrm{ adj}}^{2}$ ), median absolute error (MAD), and mean absolute percentage error (MAPE) than other models. Hence, the proposed model demonstrates superior predictive power over other benchmark models.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
Lecture Notes in Networks and Systems
4 публикации, 5.63%
Communications in Computer and Information Science
4 публикации, 5.63%
IEEE Access
4 публикации, 5.63%
Neural Computing and Applications
3 публикации, 4.23%
IEEE Transactions on Neural Networks and Learning Systems
3 публикации, 4.23%
PLoS ONE
2 публикации, 2.82%
Scientific Reports
2 публикации, 2.82%
Building and Environment
2 публикации, 2.82%
Current Bioinformatics
1 публикация, 1.41%
Remote Sensing
1 публикация, 1.41%
Computer Systems Science and Engineering
1 публикация, 1.41%
Genes
1 публикация, 1.41%
Multimedia Tools and Applications
1 публикация, 1.41%
Engineering Applications of Artificial Intelligence
1 публикация, 1.41%
Sustainable Cities and Society
1 публикация, 1.41%
IEEE Transactions on Power Systems
1 публикация, 1.41%
Cryptology and Network Security with Machine Learning
1 публикация, 1.41%
Open Journal of Statistics
1 публикация, 1.41%
Aslib Journal of Information Management
1 публикация, 1.41%
AIP Conference Proceedings
1 публикация, 1.41%
Bioresource Technology
1 публикация, 1.41%
Mathematics
1 публикация, 1.41%
Advanced Intelligent Systems
1 публикация, 1.41%
Separation and Purification Technology
1 публикация, 1.41%
Polymer Composites
1 публикация, 1.41%
BMC Medical Informatics and Decision Making
1 публикация, 1.41%
Chaos
1 публикация, 1.41%
Administrative Sciences
1 публикация, 1.41%
ACM Computing Surveys
1 публикация, 1.41%
1
2
3
4

Издатели

5
10
15
20
25
Institute of Electrical and Electronics Engineers (IEEE)
25 публикаций, 35.21%
Springer Nature
16 публикаций, 22.54%
Elsevier
10 публикаций, 14.08%
MDPI
6 публикаций, 8.45%
Association for Computing Machinery (ACM)
3 публикации, 4.23%
Public Library of Science (PLoS)
2 публикации, 2.82%
AIP Publishing
2 публикации, 2.82%
Wiley
2 публикации, 2.82%
Bentham Science Publishers Ltd.
1 публикация, 1.41%
Tech Science Press
1 публикация, 1.41%
Scientific Research Publishing
1 публикация, 1.41%
Emerald
1 публикация, 1.41%
Walter de Gruyter
1 публикация, 1.41%
5
10
15
20
25
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
71
Поделиться
Цитировать
ГОСТ |
Цитировать
Zhan C. et al. Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic // IEEE Internet of Things Journal. 2021. Vol. 8. No. 21. pp. 15906-15918.
ГОСТ со всеми авторами (до 50) Скопировать
Zhan C., Zheng Y., Zhang H., Wen Q. Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic // IEEE Internet of Things Journal. 2021. Vol. 8. No. 21. pp. 15906-15918.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/jiot.2021.3066575
UR - https://doi.org/10.1109/jiot.2021.3066575
TI - Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic
T2 - IEEE Internet of Things Journal
AU - Zhan, Choujun
AU - Zheng, Yufan
AU - Zhang, Haijun
AU - Wen, Quansi
PY - 2021
DA - 2021/11/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 15906-15918
IS - 21
VL - 8
PMID - 35582242
SN - 2327-4662
SN - 2372-2541
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Zhan,
author = {Choujun Zhan and Yufan Zheng and Haijun Zhang and Quansi Wen},
title = {Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic},
journal = {IEEE Internet of Things Journal},
year = {2021},
volume = {8},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {nov},
url = {https://doi.org/10.1109/jiot.2021.3066575},
number = {21},
pages = {15906--15918},
doi = {10.1109/jiot.2021.3066575}
}
MLA
Цитировать
Zhan, Choujun, et al. “Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic.” IEEE Internet of Things Journal, vol. 8, no. 21, Nov. 2021, pp. 15906-15918. https://doi.org/10.1109/jiot.2021.3066575.