том 11 издание 11 страницы 19421-19439

Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization

Tiantian Zhang 1
Dong-Yang Xu 1
Amr Tolba 2
Keping Yu 3
Houbing Song 4, 5
Shui Yu 6, 7
Тип публикацииJournal Article
Дата публикации2024-06-01
scimago Q1
wos Q1
БС1
SJR2.483
CiteScore16.3
Impact factor8.9
ISSN23274662, 23722541
Computer Science Applications
Hardware and Architecture
Information Systems
Computer Networks and Communications
Signal Processing
Краткое описание
The rapid advancement of wireless communication and artificial intelligence (AI) has led to a plethora of emerging applications that require exceptional connectivity, minimal latency, and substantial computing resources. The widespread adoption of cloud-edge intelligence is propelling the development of future networks capable of supporting intelligent computing. Mobile edge computing (MEC) technology facilitates the movement of computing resources and storage to the network's edge, enabling cost-effective offloading of computational tasks for related applications which needs for reduced latency and improved energy efficiency. However, the offloading efficiency is hindered by limitations of wireless transmission capacity. This paper aims to address this issue by integrating reconfigurable intelligent surfaces (RISs) into a cell-free network within an intelligent cloud-edge system. The core idea is to strategically deploy passive RISs around base stations (BSs) to reconstruct the transmission channel and improve the corresponding capacity. Subsequently, we formulate an optimal problem involving joint beamforming for RISs and BSs, which is characterized by non-convexity and complexity. To tackle this challenge, we employ an alternating optimization scheme to ensure the effectiveness of joint beamforming. In particular, deep reinforcement learning (DRL) is leveraged to reduce the computational complexity involved in optimizing task offloading. Additionally, Lyapunov optimization is utilized to model the latency queue and improve the learning efficiency of the offloading framework. We conduct comprehensive evaluations on the wireless system's capacity, average latency, and energy consumption, considering the integration of RIS with the DRL offloading framework. Experimental results demonstrate that our proposed scheme achieves superior efficiency and robustness.
Найдено 
Найдено 

Топ-30

Журналы

1
Journal of Circuits, Systems and Computers
1 публикация, 7.69%
IEEE Sensors Journal
1 публикация, 7.69%
ACM Computing Surveys
1 публикация, 7.69%
Journal of Network and Computer Applications
1 публикация, 7.69%
Scientific Reports
1 публикация, 7.69%
Intelligent Hospital
1 публикация, 7.69%
IEEE Transactions on Vehicular Technology
1 публикация, 7.69%
Internet of Things
1 публикация, 7.69%
1

Издатели

1
2
3
4
5
6
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 46.15%
Elsevier
4 публикации, 30.77%
World Scientific
1 публикация, 7.69%
Association for Computing Machinery (ACM)
1 публикация, 7.69%
Springer Nature
1 публикация, 7.69%
1
2
3
4
5
6
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Поделиться
Цитировать
ГОСТ |
Цитировать
Zhang T. et al. Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization // IEEE Internet of Things Journal. 2024. Vol. 11. No. 11. pp. 19421-19439.
ГОСТ со всеми авторами (до 50) Скопировать
Zhang T., Xu D., Tolba A., Yu K., Song H., Yu S. Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization // IEEE Internet of Things Journal. 2024. Vol. 11. No. 11. pp. 19421-19439.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/jiot.2024.3367791
UR - https://ieeexplore.ieee.org/document/10460315/
TI - Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization
T2 - IEEE Internet of Things Journal
AU - Zhang, Tiantian
AU - Xu, Dong-Yang
AU - Tolba, Amr
AU - Yu, Keping
AU - Song, Houbing
AU - Yu, Shui
PY - 2024
DA - 2024/06/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 19421-19439
IS - 11
VL - 11
SN - 2327-4662
SN - 2372-2541
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Zhang,
author = {Tiantian Zhang and Dong-Yang Xu and Amr Tolba and Keping Yu and Houbing Song and Shui Yu},
title = {Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization},
journal = {IEEE Internet of Things Journal},
year = {2024},
volume = {11},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://ieeexplore.ieee.org/document/10460315/},
number = {11},
pages = {19421--19439},
doi = {10.1109/jiot.2024.3367791}
}
MLA
Цитировать
Zhang, Tiantian, et al. “Reinforcement Learning-Based Offloading for RIS-Aided Cloud-Edge Computing in IoT Networks: Modeling, Analysis and Optimization.” IEEE Internet of Things Journal, vol. 11, no. 11, Jun. 2024, pp. 19421-19439. https://ieeexplore.ieee.org/document/10460315/.
Профили