,
страницы 1
An Energy-Efficient Mechanical Fault Diagnosis Method Based on Neural Dynamics-Inspired Metric SpikingFormer for Insufficient Samples in Industrial Internet of Things
Тип публикации: Journal Article
Дата публикации: 2024-10-08
scimago Q1
wos Q1
БС1
SJR: 2.483
CiteScore: 16.3
Impact factor: 8.9
ISSN: 23274662, 23722541
Краткое описание
The industrial Internet of Things (IIoT) significantly enhances mechanical fault diagnosis. However, IIoT-based intelligent diagnostic models struggle with sample insufficiency and high energy consumption due to collection costs and limited computing resources. Therefore, this article proposes an energy-efficient mechanical fault diagnosis method based on the neural-dynamics-inspired metric SpikingFormer (MSF) to achieve accurate fault recognition under insufficient samples. The design and construction of a data acquisition system based on the aircraft engine platform and the ship water jet propulsion platform effectively support the operation of the developed diagnostic algorithm. Specifically, an event-driven multiscale mask spiking self-attention (MMSSA) mechanism is designed to focus critical spatiotemporal features from different scales under low computational complexity. Meanwhile, a rate encoding metric classifier (REMC) is constructed to bridge spiking learning and prototype representation, thereby accurately classifying fault under insufficient samples. Finally, a customized backpropagation strategy based on neural dynamics is developed to enable the MSF to learn effectively and be stable. The superiority of the MSF in energy consumption and diagnostic accuracy is verified through comparison with six authoritative methods across standard, laboratory-acquired, and real-world datasets. The results showed that the parameter count of MSF is $7.04\times $ and $20.46\times $ less than the strong baseline method, respectively, and the diagnostic accuracy on the two real datasets is 4.52% and 6.91% higher than the latest method, respectively.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Information Fusion
2 публикации, 8%
|
|
|
Measurement: Journal of the International Measurement Confederation
2 публикации, 8%
|
|
|
IEEE Transactions on Instrumentation and Measurement
2 публикации, 8%
|
|
|
Engineering Applications of Artificial Intelligence
2 публикации, 8%
|
|
|
IEEE Sensors Journal
2 публикации, 8%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 4%
|
|
|
Machines
1 публикация, 4%
|
|
|
Expert Systems with Applications
1 публикация, 4%
|
|
|
IEEE Transactions on Cybernetics
1 публикация, 4%
|
|
|
Scientific Reports
1 публикация, 4%
|
|
|
Advanced Engineering Informatics
1 публикация, 4%
|
|
|
Engineering Research Express
1 публикация, 4%
|
|
|
IEEE Internet of Things Journal
1 публикация, 4%
|
|
|
1
2
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
13 публикаций, 52%
|
|
|
Elsevier
8 публикаций, 32%
|
|
|
MDPI
2 публикации, 8%
|
|
|
Springer Nature
1 публикация, 4%
|
|
|
IOP Publishing
1 публикация, 4%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
25
Всего цитирований:
25
Цитирований c 2024:
24
(96%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Wang C. et al. An Energy-Efficient Mechanical Fault Diagnosis Method Based on Neural Dynamics-Inspired Metric SpikingFormer for Insufficient Samples in Industrial Internet of Things // IEEE Internet of Things Journal. 2024. p. 1.
ГОСТ со всеми авторами (до 50)
Скопировать
Wang C., Yang J. L., Jie H., Zhao Z., Wang W. An Energy-Efficient Mechanical Fault Diagnosis Method Based on Neural Dynamics-Inspired Metric SpikingFormer for Insufficient Samples in Industrial Internet of Things // IEEE Internet of Things Journal. 2024. p. 1.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jiot.2024.3476034
UR - https://ieeexplore.ieee.org/document/10707284/
TI - An Energy-Efficient Mechanical Fault Diagnosis Method Based on Neural Dynamics-Inspired Metric SpikingFormer for Insufficient Samples in Industrial Internet of Things
T2 - IEEE Internet of Things Journal
AU - Wang, Changdong
AU - Yang, Jing Li
AU - Jie, Huamin
AU - Zhao, Zhenyu
AU - Wang, Wensong
PY - 2024
DA - 2024/10/08
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1
SN - 2327-4662
SN - 2372-2541
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Wang,
author = {Changdong Wang and Jing Li Yang and Huamin Jie and Zhenyu Zhao and Wensong Wang},
title = {An Energy-Efficient Mechanical Fault Diagnosis Method Based on Neural Dynamics-Inspired Metric SpikingFormer for Insufficient Samples in Industrial Internet of Things},
journal = {IEEE Internet of Things Journal},
year = {2024},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {oct},
url = {https://ieeexplore.ieee.org/document/10707284/},
pages = {1},
doi = {10.1109/jiot.2024.3476034}
}