See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions
Тип публикации: Journal Article
Дата публикации: 2025-03-15
scimago Q1
wos Q1
БС1
SJR: 2.483
CiteScore: 16.3
Impact factor: 8.9
ISSN: 23274662, 23722541
Краткое описание
Face super-resolution (FSR) is critical for bolstering intelligent security in Internet of Things (IoT) systems. Recent deep learning-driven FSR algorithms have attained remarkable progress. However, they always require separate model training and optimization for each scaling factor or input resolution, leading to inefficiency and impracticality. To overcome these limitations, we propose SAFNet, an innovative framework tailored for scale-adaptive FSR with arbitrary input resolution. SAFNet integrates scale information into representation learning to enable adaptive feature extraction and introduces dual-embedding attention to boost adaptive feature reconstruction. It leverages facial self-similarity and spatial-frequency collaboration to achieve precise scale-aware SR representations. This is attained through three key modules: 1) the scale adaption guidance unit (SAGU); 2) the scale-aware nonlocal self-similarity (SNLS) module; and 3) the spatial-frequency interactive modulation (SFIM) module. SAGU imports scaling factors using frequency encoding, SNLS exploits self-similarity to enrich feature representations, and SFIM incorporates spatial and frequency information to predict target pixel values adaptively. Comprehensive evaluations across four benchmark datasets reveal that SAFNet outperforms the second-best compared state-of-the-art (SOTA) method by about 0.2 dB/0.007 in PSNR/SSIM ( $\times 4$ on CelebA) with reduced 18.68%/42.64% computational complexity/time cost. This demonstrates SAFNet’s effectiveness and superiority, showcasing its potential as a promising solution for scale and input resolution adaptation challenges in FSR. The code will be available at https://github.com/ICVIPLab/SAFNet .
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Всего цитирований:
0
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Li L. et al. See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions // IEEE Internet of Things Journal. 2025. Vol. 12. No. 6. pp. 6979-6996.
ГОСТ со всеми авторами (до 50)
Скопировать
Li L., Zhang Y., Yuan L., Li S., Meyers M. A. See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions // IEEE Internet of Things Journal. 2025. Vol. 12. No. 6. pp. 6979-6996.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jiot.2024.3492716
UR - https://ieeexplore.ieee.org/document/10745550/
TI - See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions
T2 - IEEE Internet of Things Journal
AU - Li, Ling
AU - Zhang, Yan
AU - Yuan, Lin
AU - Li, Shuang
AU - Meyers, M. A.
PY - 2025
DA - 2025/03/15
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 6979-6996
IS - 6
VL - 12
SN - 2327-4662
SN - 2372-2541
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Li,
author = {Ling Li and Yan Zhang and Lin Yuan and Shuang Li and M. A. Meyers},
title = {See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions},
journal = {IEEE Internet of Things Journal},
year = {2025},
volume = {12},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {mar},
url = {https://ieeexplore.ieee.org/document/10745550/},
number = {6},
pages = {6979--6996},
doi = {10.1109/jiot.2024.3492716}
}
Цитировать
MLA
Скопировать
Li, Ling, et al. “See as You Desire: Scale-adaptive Face Super-Resolution for Varying Low Resolutions.” IEEE Internet of Things Journal, vol. 12, no. 6, Mar. 2025, pp. 6979-6996. https://ieeexplore.ieee.org/document/10745550/.