Toward Intelligent Attack Detection With Causal Transformer in Internet of Things
1
4
Director of Technology Center, Hunan Valin Iron and Steel Group Company Ltd., Loudi, Hunan, China
|
5
Digital Intelligence Center, Hunan Valin Lian-Yuan Iron and Steel Company Ltd., Loudi, Hunan, China
|
6
Тип публикации: Journal Article
Дата публикации: 2025-04-15
scimago Q1
wos Q1
БС1
SJR: 2.483
CiteScore: 16.3
Impact factor: 8.9
ISSN: 23274662, 23722541
Краткое описание
It is difficult for existing Internet of Things (IoT) intrusion detection systems to simultaneously identify and classify network anomalies, especially when the classification of unknown attacks is required, which brings great risks to the use of IoT devices. This article applies transformers to decouple false associations by causal reasoning to obtain an intelligent interpretable IoT detection system that can classify known attacks and identify unknown attacks. To achieve these goals, a causal transformer-based intelligent detection system for IoT devices is proposed. The system is divided into three main modules. First, training is conducted based on known traffic types with prior knowledge, and then the detection samples containing unknown attack types are classified into known traffic types. Second, the causal feature distribution of known traffic types is learned based on causal attention, and the causal feature distribution differences between normal and abnormal traffic samples are amplified with the minimax strategy to distinguish their types. Then, all traffic samples different from the known types are integrated into unknown types for causal transformer classification until there is only one type. Validation is performed on three broad and representative IoT datasets, and the results show that the causal transformer detection system can not only correctly classify known attacks but also achieve a 100% success rate in identifying cyberattacks on IoT datasets. In addition, more than 99% of unknown attack types can be effectively identified and classified, providing timely and effective guidance for cybersecurity defense.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
IEEE Internet of Things Journal
2 публикации, 40%
|
|
|
Lecture Notes in Computer Science
1 публикация, 20%
|
|
|
Computer Journal
1 публикация, 20%
|
|
|
1
2
|
Издатели
|
1
2
3
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 60%
|
|
|
Springer Nature
1 публикация, 20%
|
|
|
Oxford University Press
1 публикация, 20%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Всего цитирований:
5
Цитирований c 2024:
5
(100%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Zeng Z. et al. Toward Intelligent Attack Detection With Causal Transformer in Internet of Things // IEEE Internet of Things Journal. 2025. Vol. 12. No. 8. pp. 10751-10767.
ГОСТ со всеми авторами (до 50)
Скопировать
Zeng Z., Zhao B., Deng X., Liu X., Zheng J., Chen J. Toward Intelligent Attack Detection With Causal Transformer in Internet of Things // IEEE Internet of Things Journal. 2025. Vol. 12. No. 8. pp. 10751-10767.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jiot.2024.3512531
UR - https://ieeexplore.ieee.org/document/10793099/
TI - Toward Intelligent Attack Detection With Causal Transformer in Internet of Things
T2 - IEEE Internet of Things Journal
AU - Zeng, Zengri
AU - Zhao, Baokang
AU - Deng, Xiaoheng
AU - Liu, Xuhui
AU - Zheng, Jian
AU - Chen, Jie
PY - 2025
DA - 2025/04/15
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 10751-10767
IS - 8
VL - 12
SN - 2327-4662
SN - 2372-2541
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Zeng,
author = {Zengri Zeng and Baokang Zhao and Xiaoheng Deng and Xuhui Liu and Jian Zheng and Jie Chen},
title = {Toward Intelligent Attack Detection With Causal Transformer in Internet of Things},
journal = {IEEE Internet of Things Journal},
year = {2025},
volume = {12},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {apr},
url = {https://ieeexplore.ieee.org/document/10793099/},
number = {8},
pages = {10751--10767},
doi = {10.1109/jiot.2024.3512531}
}
Цитировать
MLA
Скопировать
Zeng, Zengri, et al. “Toward Intelligent Attack Detection With Causal Transformer in Internet of Things.” IEEE Internet of Things Journal, vol. 12, no. 8, Apr. 2025, pp. 10751-10767. https://ieeexplore.ieee.org/document/10793099/.